
CS / MCS 401 Homework 4 grader solutions assignment due July 11, 2016
written by Jānis Lazovskis

Questions from CLRS.

6.2-1 (p.156) Using Figure 6.2 as a model, illustrate the operation of Max-Heapify(A, 3) on the array A = 〈27, 17,

3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0〉.

Following the algorithm, we find that node 3 is exchanged with node 6, then node 6 is exchanged with node 13.
The diagrams illustrating these operations are given below.

27

17 3

16 13 10 1

5 7 12 4 8 9 0

1

2 3

4 5 6 7

8 9 10 11 12 13 14

Step 0:

27

17 10

16 13 3 1

5 7 12 4 8 9 0

1

2 3

4 5 6 7

8 9 10 11 12 13 14

Step 1:

27

17 10

16 13 9 1

5 7 12 4 8 3 0

1

2 3

4 5 6 7

8 9 10 11 12 13 14

Step 2:

�

6.2-3 (p.156) What is the effect of calling Max-Heapify(A, i) when the element A[i] is larger than its children?

There is no effect. All three if conditions fail, largest is set to i, and the process terminates wihtout having
changed anything in the heap. �

6.2-4 (p.156) What is the effect of calling Max-Heapify(A, i) for i > A.heap-size/2?

If i > A.heap-size/2, then node i has no children (and it is either at the second lowest or lowest level of the
binary tree). Moreover, Left(i) and Right(i) are larger than A.heap-size, meaning that lines 3 and 6 (the first two
if conditions) of the algorithm will return errors, because the array index will be out of range. �

1



6.4-1 (p.160) Using Figure 6.4 as a model, illustrate the operation of Heapsort on the array A = 〈5, 13, 2, 25, 7,

17, 20, 8, 4〉.

Since A.length = 9, the command Max-Heapify(A, i) is called for i = 4, 3, 2, 1. The action of Build-Max-
Heap is as follows (these first few diagrams are not required for a correct answer), with the nodes exchanged at each
step shaded:

Build-Max-Heap(A):

5

13 2

25 7 17 20

8 4

Max-Heapify(A, 4):

5

13 2

25 7 17 20

8 4

Max-Heapify(A, 3):

5

13 20

25 7 17 2

8 4

Max-Heapify(A, 2):

5

25 20

13 7 17 2

8 4

Max-Heapify(A, 1):

25

13 20

8 7 17 2

5 4

2



Now we follow Figure 6.4 (these diagrams are required for a correct answer):

Step 0

25

13 20

8 7 17 2

5 4

Step 1

20

13 17

8 7 4 2

5 25

i

Step 2

17

13 5

8 7 4 2

20 25

i

Step 3

13

8 5

2 7 4 17

20 25

i

Step 4

8

7 5

2 4 13 17

20 25

i

Step 5

7

4 5

2 8 13 17

20 25

i

Step 6

5

4 2

7 8 13 17

20 25

i

Step 7

4

2 5

7 8 13 17

20 25

i

Step 8

2

4 5

7 8 13 17

20 25

i

This gives a final sorted array A = 〈2, 4, 5, 7, 8, 13, 17, 20, 25〉. �

3



6.4-3 (p.160) What is the running time of Heapsort on an array A of length n that is already sorted in increasing

order? What about decreasing order?

If A is sorted in increasing order, Build-Max-Heap will attain the maximum running time of Θ(n), since it
tries to order the array in a decreasing order. The n− 1 calls Max-Heapify(A, 1) will take at most O(log2(n)) time
(there are no particular time saves from max-heapifying an ordered array), hence the running time of Heapsort
will be O(n log2(n)).

If A is sorted in decreasing order, Max-Heapify(A, i) has running time O(1) for any i (since it never calls itself
recursively, as largest = i for all i. However, this makes no difference in the running time of Build-Max-Heap, as we
still get Θ(n) running time due to the bn/2c calls to Max-Heapify. Here as well the n−1 calls Max-Heapify(A, 1)
will take at most O(log2(n)) time (completely reversing the order of an array certainly does not save time). Hence
the running time of Heapsort will be O(n log2(n)). �

6.5-1 (p.164) Illustrate the operation of Heap-Extract-Max on the heap A = 〈15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1〉.

First we set max = 15 (which will be the returned value), then set A[1] = 1 and shorten the array (Step 0), and
then do Max-Heapify(A, 1) on the remaining array (Steps 1-3). The nodes which are exchanged in each step are
darkened.

Step 0

1

13 9

5 12 8 7

4 0 6 2 15

Step 1

13

1 9

5 12 8 7

4 0 6 2

Step 2

13

12 9

5 1 8 7

4 0 6 2

Step 3

13

12 9

5 6 8 7

4 0 1 2

Now A = 〈13, 12, 9, 5, 6, 8, 7, 4, 0, 1, 2〉 and Heap-Extract-Max returns the value 15. �

4


