CS / MCS 401 Homework 2 grader solutions

Questions from CLRS. Questions marked with an asterisk * were not graded.

3.1-2 (p.52) Show that for any real constants a and b, where b > 0, $(n + a)^b = \Theta(n^b)$.

We claim that there exists n_0 such that for all $n \ge n_0$,

$$\left(\frac{1}{2}\right)^b n^b \leqslant (n+a)^b \leqslant \left(\frac{3}{2}\right)^b n^b.$$
(1)

This comes from noting that for all n > 2a,

$$\frac{1}{2}n \leqslant n + a \leqslant \frac{3}{2}n. \tag{2}$$

Indeed, if $n = 2a + \epsilon$ for some $\epsilon > 0$, then the above inequality becomes

$$a + \frac{1}{2}\epsilon \leqslant 3a + \epsilon \leqslant 3a + \frac{3}{2}\epsilon$$

which is immediately true if $a \ge 0$, and is true for $\epsilon > |3a|$ if a < 0. Hence raising all sides of the inequality (2) to a positive power b (which preserves the directions of the inequality for large enough n, as everything is then positive), we get inequality (1), as desired. This is also bounded below by 0 for large enough n, therefore $(n + a)^b$ is $\Theta(n^b)$.

3.1-4
$$(p.53)$$
 Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

The first statement is true. Note that $2^{n+1} = 2 \cdot 2^n$, so using a constant of c = 2 we see that $2^{n+1} \leq 2 \cdot 2^n$ for all n.

The second statement is false. Suppose that $2^{2n} = O(2^n)$, with constant c. Then for all $n \ge n_0$ for some fixed n_0 , we have that

$$2^{2n} \leqslant c \cdot 2^n = 2^{\log_2(c)} \cdot 2^n = 2^{\log_2(c)+n}.$$

However, since $\log_2(c)$ is finite, there is some $N > \log_2(c)$, for which it is immediate that $2^{2N} > 2^{\log_2(c)+N}$, contradicting the above. Therefore the statement is false.

3.2-2 (p.60) Prove equation (3.16), which states that $a^{\log_b(c)} = c^{\log_b(a)}$.

Use equation (3.15), which states that $\log_x(y) = \ln(x)/\ln(y)$. Applying reversible operations to the equation above, we reach a true statement, and so the original statement is true. Indeed,

$$\begin{aligned} a^{\log_b(c)} &= c^{\log_b(a)} & \text{(given)} \\ \ln(a^{\log_b(c)}) &= \ln(c^{\log_b(a)}) & \text{(applying ln to both sides)} \\ \log_b(c) \ln(a) &= \log_b(a) \ln(c) & \text{(laws of logarithms)} \\ \frac{\ln(c) \ln(a)}{\ln(b)} &= \frac{\ln(a) \ln(c)}{\ln(b)}, & \text{(equation 3.15)} \end{aligned}$$

which is true.

3.2-8 (p.60) Show that $k \ln(k) = \Theta(n)$ implies $k = \Theta(n/\ln(n))$.

We are given that $k \ln(k) = \Theta(n)$, or that there exist positive constants c_1, c_2 such that

$$0 \leqslant c_1 n \leqslant k \ln(k) \leqslant c_2 n. \tag{3}$$

Dividing this inequality by $\ln(n)$, we get

$$0 \leqslant c_1 \frac{n}{\ln(n)} \leqslant k \frac{\ln(k)}{\ln(n)} \leqslant c_2 \frac{n}{\ln(n)}.$$
(4)

Since $\ln(k)/\ln(n) \to 0$ as $n \to \infty$, we will keep c_1 as the lower bound constant to show that $k = \Theta(n/\ln(n))$ (that is, replacing $\ln(k)/\ln(n)$ with the constant 1 does not change the truth of the middle inequality of (4)).

For the upper bound, use the left side of (3) to note that

$$c_1 n \leq k \ln(k) < k^2 \implies \ln(c_1) + \ln(n) < 2 \ln(k) \implies \frac{\ln(n)}{\ln(k)} < 2 - \frac{\ln(c_1)}{\ln(k)} < 2$$

for k large enough. Finally, rewrite k and use the right side of (4) to get

$$k = k \frac{\ln(k)}{\ln(n)} \frac{\ln(n)}{\ln(k)} < c_2 \frac{n}{\ln(n)} \cdot 2.$$

Now we have that

$$0 \leqslant c_1 \frac{n}{\ln(n)} \leqslant k \leqslant (2c_2) \frac{n}{\ln(n)}$$

for n large enough, or in other words, that k is $\Theta(n/\ln(n))$.

3.2 (p.61) Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω , ω , or Θ of B. Assume that $k \ge 1$, $\epsilon > 0$, and c > 1 are constants. Your answer should be in the form of the table with "yes" or "no" written in each box.

The table is given below. Some justification is expected.

A	В	0	0	Ω	ω	Θ
$\log_2^k(n)$	n^{ϵ}	yes	yes	no	no	no
n^k	c^n	yes	yes	no	no	no
\sqrt{n}	$n^{\sin(n)}$	no	no	no	no	no
2^n	$2^{n/2}$	no	no	yes	yes	no
$n^{\log_2(c)}$	$c^{\log_2(n)}$	yes	no	yes	no	yes
$\log_2(n!)$	$\log_2(n^n)$	yes	no	yes	no	yes

Here are some short justification arguments:

a. Any polynomial grows strictly faster than any logarithm.

b. Any exponential grows strictly faster than any polynomial.

c. The maxima of $n^{\sin(n)}$ increase exponentially, yet it has value 1 periodically. However, the function \sqrt{n} is monotonically increasing past 1, so there are no relations among them in terms of growth.

d. Decreasing the base (from 2 to $\sqrt{2} = 2^{1/2}$) of an exponential function makes it grow strictly slower.

e. Question 3.2-2 above shows both functions are the same.

f. Showing O and Ω involves ounding the sum. For Θ , use Stirling's apporximation on page 57.

4.3-1 (p.87) Show that the solution of T(n) = T(n-1) + n is $O(n^2)$.

We find the answer by expressing T(n) in terms of elements in the sequence that come before it. We find that

$$T(n) = T(n-1) + n$$

= $T(n-2) + (n-1) + n$
= $T(n-3) + (n-2) + (n-1) + n$
:
= $T(0) + \sum_{k=1}^{n} k$
= $T(0) + \frac{n(n+1)}{2}$
= $O(n^2)$,

as desired.

4.3-2 (p.87) Show that the solution of $T(n) = T(\lceil n/2 \rceil) + 1$ is $O(\log_2(n))$.

Similarly to above, we simplify T(n) to find

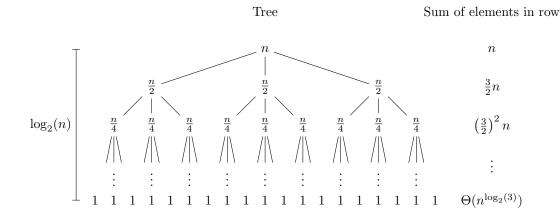
$$T(n) = T(\lceil n/2 \rceil) + 1 = T(\lceil n/4 \rceil) + 2 = T(\lceil n/8 \rceil) + 3 = \dots = T(1) + c.$$

This terminates at 1 after a certain number of steps, say k. That is, after $n/2^k \leq 1$ (because then $1 = \lceil n/2^k \rceil = \lceil n/2^{k+1} \rceil$), or when $n \leq 2^k$, or when $k \leq \log_2(n)$. Since c is the number of steps we've taken, it follows that $c = \lceil \log_2(n) \rceil$. Hence the solution of T(n) is $O(\log_2(n))$.

* **4.3-6** (p.87) Show that the solution to $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ is $O(n \log_2(n))$.

4.4-1 (p.92) Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = 3T(\lfloor n/2 \rfloor) + n$. Use the substitution method to verify your answer.

We construct the tree as described in the book, summing all the elements of each row. We make the assumption that n is a power of 2 and we ignore the floor function.



The last row has $(3/2)^{\log_2(n)}n$ elements, but

$$\left(\frac{3}{2}\right)^{\log_2(n)} n = n^{\log_2(3/2)} n = n^{\log_2(3) - \log_2(2) + 1} = n^{\log_2(3)},$$

so we get the given result.

Taking the sum of the elements of each row, we get

$$\begin{split} T(n) &= n + \frac{3}{2}n + \left(\frac{3}{2}\right)^2 n + \dots + \left(\frac{3}{2}\right)^{\log_2(n) - 1} n + \Theta(n^{\log_2(3)}) \\ &= \sum_{i=0}^{\log_2(n) - 1} \left(\frac{3}{2}\right)^i n + \Theta(n^{\log_2(3)}) \\ &= n \cdot \frac{(3/2)^{\log_2(n)} - 1}{3/2 - 1} + \Theta(n^{\log_2(3)}) \\ &= 2n \left(\frac{3^{\log_2(n)}}{2^{\log_2(n)}} - 1\right) + \Theta(n^{\log_2(3)}) \\ &= \frac{2n \cdot n^{\log_2(3)}}{n} - 2n + \Theta(n^{\log_2(3)}) \\ &= n^{\log_2(3)} - 2n + \Theta(n^{\log_2(3)}) \\ &= O(n^{\log_2(3)}), \end{split}$$

where in the third line we used the formula for a finite geometric series (equation (A.5) on page 1147). This is our asymptotic upper bound on the recurrence T(n).

4.4-2 (p.92) Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n) = T(n/2) + n^2$. Use the substitution method to verify your answer.

This is the tree corresponding to the recurrence:

Tree Sum of elements in row

$$\begin{bmatrix}
n^2 & n^2 \\
\vdots & \vdots \\
\log_2(n) \\
\end{bmatrix} \begin{bmatrix}
n^2 & \left(\frac{n}{2}\right)^2 \\
\vdots & \left(\frac{n}{4}\right)^2 \\
\vdots & \vdots \\
1 & \Theta(1)
\end{bmatrix}$$

The last line, by the pattern of the sum of elements in each row, should have $\frac{n^2}{2^{2\log_2(n)}} = \frac{n^2}{n^2} = 1$ element. Taking the sum of the elements of each row, we get

$$T(n) = n^{2} + \left(\frac{n}{2}\right)^{2} + \left(\frac{n}{4}\right)^{2} + \dots + \left(\frac{n}{2^{\log_{2}(n)-1}}\right)^{2} + \Theta(1)$$

$$= \sum_{i=0}^{\log_{2}(n)-1} \frac{n^{2}}{2^{2i}} + \Theta(1)$$

$$= n^{2} \cdot \frac{(1/4)^{\log_{2}(n)} - 1}{1/4 - 1} + \Theta(1)$$

$$= -3n^{2} \left(\frac{1}{n^{2}} - 1\right) + \Theta(1)$$

$$= 3n^{2} - 3 + \Theta(1)$$

$$= O(n^{2}).$$

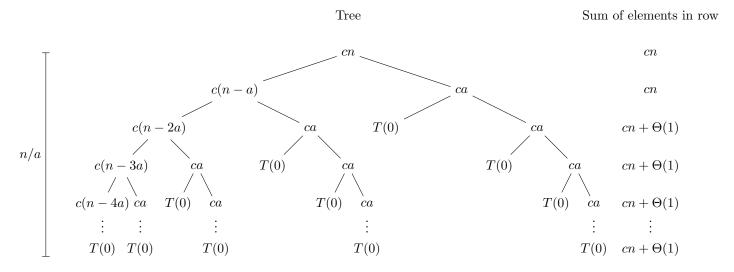
Note the constant -3 is absorbed into $\Theta(1)$, giving us an asymptotic upper bound of $O(n^2)$. Note that this is actually an asymptotically tight bound, so we could have written $\Theta(n^2)$ as well.

* 4.4-4 (p.93) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = 2T(n-1) + 1.

* 4.4-5 (p.93) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n-1) + T(n/2) + n.

4.4-8 (p.93) Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n-a) + T(a) + cn, where $a \ge 1$ and c > 0 are constants.

This is the tree corresponding to the recurrence:



Taking the sum of the elements of each row, we get

$$T(n) = cn + cn + cn + \Theta(1) + \dots + cn + \Theta(1)$$

= $(n/a) \cdot cn + \Theta(1)$
= $(c/a)n^2 + \Theta(1)$
= $\Theta(n^2)$.

which is asymptotically tight because we did not introduce any slopiness into the calculations.

* 4.4-9 (p.93) Use a recursion tree to give an asymptotically tight solution to the recurrence $T(n) = T(\alpha n) + T((1-\alpha)n) + cn$, where α is a constant in the range $0 < \alpha < 1$ and c > 0 is also a constant.

4.5-1 (p.96) Use the master method to give tight asymptotic bounds for the following recurrences.

For all these a = 2 and b = 4, and $\log_4(2) = 1/2$. **a.** T(n) = 2T(n/4) + 1. Since 1 is a constant, we can only say it is $O(n^{1/2-\epsilon})$, so case 1 applies, and $T(n) = \Theta(n^{1/2})$.

b. $T(n) = 2T(n/4) + \sqrt{n}$. Since $\sqrt{n} = \Theta(n^{1/2})$, case 2 applies, and $T(n) = \Theta(n^{1/2}\log_2(n))$.

c. T(n) = 2T(n/4) + n. Since $n = \Omega(n^{1/2+\epsilon})$ and $2 \cdot n/4 = 2n \leq 3n$, where 3 > 1 is certainly a constant, case 3 applies, and $T(n) = \Theta(n)$.

d. $T(n) = 2T(n/4) + n^2$. Since $n = \Omega(n^{1/2+\epsilon})$ and $2 \cdot (n/4)^2 = n^2/8 \leq 2n^2$, where 2 > 1 is certainly a constant, case 3 applies, and $T(n) = \Theta(n^2)$. **4.5-3** (p.97) Use the master method to show that the solution to the binary-search recurrence $T(n) = T(n/2) + \Theta(1)$ is $T(n) = \Theta(\log_2(n))$.

Here a = 1 and b = 2, so $\log_2(1) = 0$. Case 2 applies, because $\Theta(n^{\log_2(1)}) = \Theta(n^0) = \Theta(1)$, which is exactly the f(n) term. Hence by the master method, $T(n) = \Theta(n^{\log_2(1)} \log_2(n)) = \Theta(\log_2(n))$, as desired.

4.5-4 (p.97) Can the master method be applied to the recurrence $T(n) = 4T(n/2) + n^2 \log_2(n)$? Why or why not? Give an asymptotic upper bound for this recurrence.

Here a = 4 and b = 2, so $\log_2(4) = 2$. Case 1 does not apply, because $n^2 \log_2(n)$ is not bounded above by $n^{2-\epsilon}$ (that is, it is not $O(n^{2-\epsilon})$. Case 2 does not apply, because it is not bound above or below by n^2 (that is, it is not $O(n^2)$). Finally, case 3 also does not apply, because although $n^2 \log_2(n) = \Omega(n^2)$, it is not $\Omega(n^{2+\epsilon})$, because any positive power of n eventually grows faster than $\log_2(n)$. Hence the master method can not be applied.

An asymptotic upper bound of $O(n^2 \log_2(n))$ may be found via the substitution or recurrence tree method.