
CS / MCS 401 Homework 2 grader solutions
assignment due June 27, 2016

written by Jānis Lazovskis
maximum points: 30

Questions from CLRS. Questions marked with an asterisk ∗ were not graded.

3.1-2 (p.52) Show that for any real constants a and b, where b > 0, (n+ a)b = Θ(nb).

We claim that there exists n0 such that for all n > n0,(
1

2

)b
nb 6 (n+ a)b 6

(
3

2

)b
nb. (1)

This comes from noting that for all n > 2a,
1

2
n 6 n+ a 6

3

2
n. (2)

Indeed, if n = 2a+ ε for some ε > 0, then the above inequality becomes

a+
1

2
ε 6 3a+ ε 6 3a+

3

2
ε,

which is immediately true if a > 0, and is true for ε > |3a| if a < 0. Hence raising all sides of the inequality (2) to a
positive power b (which preserves the directions of the inequality for large enough n, as everything is then positive),
we get inequality (1), as desired. This is also bounded below by 0 for large enough n, therefore (n+ a)b is Θ(nb). �

3.1-4 (p.53) Is 2n+1 = O(2n)? Is 22n = O(2n)?

The first statement is true. Note that 2n+1 = 2 ·2n, so using a constant of c = 2 we see that 2n+1 6 2 ·2n for all n.

The second statement is false. Suppose that 22n = O(2n), with constant c. Then for all n > n0 for some fixed
n0, we have that

22n 6 c · 2n = 2log2(c) · 2n = 2log2(c)+n.

However, since log2(c) is finite, there is some N > log2(c), for which it is immediate that 22N > 2log2(c)+N , contra-
dicting the above. Therefore the statement is false. �

3.2-2 (p.60) Prove equation (3.16), which states that alogb(c) = clogb(a).

Use equation (3.15), which states that logx(y) = ln(x)/ ln(y). Applying reversible operations to the equation
above, we reach a true statement, and so the original statement is true. Indeed,

alogb(c) = clogb(a) (given)

ln(alogb(c)) = ln(clogb(a)) (applying ln to both sides)

logb(c) ln(a) = logb(a) ln(c) (laws of logarithms)

ln(c) ln(a)

ln(b)
=

ln(a) ln(c)

ln(b)
, (equation 3.15)

which is true. �

1



3.2-8 (p.60) Show that k ln(k) = Θ(n) implies k = Θ(n/ ln(n)).

We are given that k ln(k) = Θ(n), or that there exist positive constants c1, c2 such that

0 6 c1n 6 k ln(k) 6 c2n. (3)

Dividing this inequality by ln(n), we get

0 6 c1
n

ln(n)
6 k

ln(k)

ln(n)
6 c2

n

ln(n)
. (4)

Since ln(k)/ ln(n) → 0 as n → ∞, we will keep c1 as the lower bound constant to show that k = Θ(n/ ln(n)) (that
is, replacing ln(k)/ ln(n) with the constant 1 does not change the truth of the middle inequality of (4)).

For the upper bound, use the left side of (3) to note that

c1n 6 k ln(k) < k2 =⇒ ln(c1) + ln(n) < 2 ln(k) =⇒ ln(n)

ln(k)
< 2− ln(c1)

ln(k)
< 2

for k large enough. Finally, rewrite k and use the right side of (4) to get

k = k
ln(k)

ln(n)

ln(n)

ln(k)
< c2

n

ln(n)
· 2.

Now we have that
0 6 c1

n

ln(n)
6 k 6 (2c2)

n

ln(n)

for n large enough, or in other words, that k is Θ(n/ ln(n)). �

3.2 (p.61) Indicate, for each pair of expressions (A,B) in the table below, whether A is O, o, Ω, ω, or Θ of B.

Assume that k > 1, ε > 0, and c > 1 are constants. Your answer should be in the form of the table with “yes” or
“no” written in each box.

The table is given below. Some justification is expected.

A B O o Ω ω Θ

logk2(n) nε yes yes no no no

nk cn yes yes no no no
√
n nsin(n) no no no no no

2n 2n/2 no no yes yes no

nlog2(c) clog2(n) yes no yes no yes

log2(n!) log2(nn) yes no yes no yes

Here are some short justification arguments:
a. Any polynomial grows strictly faster than any logarithm.
b. Any exponential grows strictly faster than any polynomial.
c. The maxima of nsin(n) increase exponentially, yet it has value 1 periodically. However, the function

√
n is

monotonically increasing past 1, so there are no relations among them in terms of growth.
d. Decreasing the base (from 2 to

√
2 = 21/2) of an exponential function makes it grow strictly slower.

e. Question 3.2-2 above shows both functions are the same.
f. Showing O and Ω involves ounding the sum. For Θ, use Stirling’s apporximation on page 57. �
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4.3-1 (p.87) Show that the solution of T (n) = T (n− 1) + n is O(n2).

We find the answer by expressing T (n) in terms of elements in the seqence that come before it. We find that

T (n) = T (n− 1) + n

= T (n− 2) + (n− 1) + n

= T (n− 3) + (n− 2) + (n− 1) + n

...

= T (0) +

n∑
k=1

k

= T (0) +
n(n+ 1)

2

= O(n2),

as desired. �

4.3-2 (p.87) Show that the solution of T (n) = T (dn/2e) + 1 is O(log2(n)).

Similarly to above, we simplfy T (n) to find

T (n) = T (dn/2e) + 1 = T (dn/4e) + 2 = T (dn/8e) + 3 = · · · = T (1) + c.

This terminates at 1 after a certain number of steps, say k. That is, after n/2k 6 1 (because then 1 = dn/2ke =
dn/2k+1e), or when n 6 2k, or when k 6 log2(n). Since c is the nmber of steps we’ve taken, it follows that
c = dlog2(n)e. Hence the solution of T (n) is O(log2(n)). �

∗ 4.3-6 (p.87) Show that the solution to T (n) = 2T (bn/2c+ 17) + n is O(n log2(n)).

4.4-1 (p.92) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = 3T (bn/2c)+

n. Use the substitution method to verify your answer.

We construct the tree as described in the book, summing all the elements of each row. We make the assumption
that n is a power of 2 and we ignore the floor function.

n

n
2

n
2

n
2

n
4

...

n
4

...

n
4

...

n
4

...

n
4

...

n
4

...

n
4

...

n
4

...

n
4

...

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n

3
2n(
3
2

)2
n

...

Θ(nlog2(3))

log2(n)

Tree Sum of elements in row

The last row has (3/2)log2(n)n elements, but(
3
2

)log2(n) n = nlog2(3/2)n = nlog2(3)−log2(2)+1 = nlog2(3),

so we get the given result.
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Taking the sum of the elements of each row, we get

T (n) = n+
3

2
n+

(
3

2

)2

n+ · · ·+
(

3

2

)log2(n)−1

n+ Θ(nlog2(3))

=

log2(n)−1∑
i=0

(
3

2

)i
n+ Θ(nlog2(3))

= n · (3/2)log2(n) − 1

3/2− 1
+ Θ(nlog2(3))

= 2n

(
3log2(n)

2log2(n)
− 1

)
+ Θ(nlog2(3))

=
2n · nlog2(3)

n
− 2n+ Θ(nlog2(3))

= nlog2(3) − 2n+ Θ(nlog2(3))

= O(nlog2(3)),

where in the third line we used the formula for a finite geometric series (equation (A.5) on page 1147). This is our
asymptotic upper bound on the recurrence T (n). �

4.4-2 (p.92) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) = T (n/2)+n2.

Use the substitution method to verify your answer.

This is the tree corresponding to the recurrence:

n2

n2

4

n2

16

...

1

n2

(
n
2

)2
(
n
4

)2
...

Θ(1)

log2(n)

Tree Sum of elements in row

The last line, by the pattern of the sum of elements in each row, should have n2

22 log2(n) = n2

n2 = 1 element. Taking the
sum of the elements of each row, we get

T (n) = n2 +
(n

2

)2
+
(n

4

)2
+ · · ·+

( n

2log2(n)−1

)2
+ Θ(1)

=

log2(n)−1∑
i=0

n2

22i
+ Θ(1)

= n2 · (1/4)log2(n) − 1

1/4− 1
+ Θ(1)

= −3n2
(

1

n2
− 1

)
+ Θ(1)

= 3n2 − 3 + Θ(1)

= O(n2).

Note the constant −3 is absorbed into Θ(1), giving us an asymptotic upper bound of O(n2). Note that this is actually
an asymptotically tight bound, so we could have written Θ(n2) as well. �
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∗ 4.4-4 (p.93) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) =

2T (n− 1) + 1.

∗ 4.4-5 (p.93) Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) =

T (n− 1) + T (n/2) + n.

4.4-8 (p.93) Use a recursion tree to give an asymptotically tight solution to the recurrence T (n) = T (n − a) +

T (a) + cn, where a > 1 and c > 0 are constants.

This is the tree corresponding to the recurrence:

cn

c(n− a)

c(n− 2a) ca

c(n− 3a) ca T (0) ca

c(n− 4a) ca T (0) ca T (0) ca

ca

T (0) ca

T (0) ca

T (0) ca
...

T (0)

...

T (0)

...

T (0)

...

T (0)

...

T (0)

cn

cn

cn+ Θ(1)

cn+ Θ(1)

cn+ Θ(1)
...

cn+ Θ(1)

n/a

Tree Sum of elements in row

Taking the sum of the elements of each row, we get

T (n) = cn+ cn+ cn+ Θ(1) + · · ·+ cn+ Θ(1)

= (n/a) · cn+ Θ(1)

= (c/a)n2 + Θ(1)

= Θ(n2),

which is asymptotically tight because we did not introduce any slopiness into the calculations. �

∗ 4.4-9 (p.93) Use a recursion tree to give an asymptotically tight solution to the recurrence T (n) = T (αn) +

T ((1− α)n) + cn, where α is a constant in the range 0 < α < 1 and c > 0 is also a constant.

4.5-1 (p.96) Use the master method to give tight asymptotic bounds for the following recurrences.

For all these a = 2 and b = 4, and log4(2) = 1/2.
a. T (n) = 2T (n/4) + 1.
Since 1 is a constant, we can only say it is O(n1/2−ε), so case 1 applies, and T (n) = Θ(n1/2).

b. T (n) = 2T (n/4) +
√
n.

Since
√
n = Θ(n1/2), case 2 applies, and T (n) = Θ(n1/2 log2(n)).

c. T (n) = 2T (n/4) + n.
Since n = Ω(n1/2+ε) and 2 ·n/4 = 2n 6 3n, where 3 > 1 is certainly a constant, case 3 applies, and T (n) = Θ(n).

d. T (n) = 2T (n/4) + n2.
Since n = Ω(n1/2+ε) and 2 · (n/4)2 = n2/8 6 2n2, where 2 > 1 is certainly a constant, case 3 applies, and

T (n) = Θ(n2). �
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4.5-3 (p.97) Use the master method to show that the solution to the binary-search recurrence T (n) = T (n/2)+Θ(1)

is T (n) = Θ(log2(n)).

Here a = 1 and b = 2, so log2(1) = 0. Case 2 applies, because Θ(nlog2(1)) = Θ(n0) = Θ(1), which is exactly the
f(n) term. Hence by the master method, T (n) = Θ(nlog2(1) log2(n)) = Θ(log2(n)), as desired. �

4.5-4 (p.97) Can the master method be applied to the recurrence T (n) = 4T (n/2) + n2 log2(n)? Why or why not?

Give an asymptotic upper bound for this reccurence.

Here a = 4 and b = 2, so log2(4) = 2. Case 1 does not apply, because n2 log2(n) is not bounded above by n2−ε

(that is, it is not O(n2−ε). Case 2 does not apply, because it is not bound above or below by n2 (that is, it is not
Θ(n2)). Finally, case 3 also does not apply, because although n2 log2(n) = Ω(n2), it is not Ω(n2+ε), because any
positive power of n eventually grows faster than log2(n). Hence the master method can not be applied.

An asymptotic upper bound of O(n2 log2(n)) may be found via the substitution or recurrence tree method. �
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