. assignment due June 27, 2016
CS / MCS 401 Homework 2 grader solutions written by Janis Lazovskis

maximum points: 30

Questions from CLRS. Questions marked with an asterisk x were not graded.

3.1-2 (p.52) | Show that for any real constants a and b, where b > 0, (n + a)’ = O(n®).

We claim that there exists ng such that for all n > ng,

(;)bnb <(n+a)< (g)bn”. (1)

This comes from noting that for all n > 2a,

1 3
§n<n+a<§n. (2)

Indeed, if n = 2a + € for some € > 0, then the above inequality becomes

1 3
a+§e<3a+e<3a+§e7

which is immediately true if a > 0, and is true for € > |3a| if a < 0. Hence raising all sides of the inequality to a
positive power b (which preserves the directions of the inequality for large enough n, as everything is then positive),
we get inequality , as desired. This is also bounded below by 0 for large enough n, therefore (n+a)® is ©(n®). W

3.1-4 (p.53)| Is 2"t = O(2")? Is 22" = O(2")?

The first statement is true. Note that 27! = 2-2" so using a constant of ¢ = 2 we see that 2”1 < 2.2 for all n.

The second statement is false. Suppose that 22" = O(2"), with constant ¢. Then for all n > ng for some fixed

ng, we have that
92n <ec 2" = 210g2(c) .9on _ 9log, (c)+n.

However, since log,(c) is finite, there is some N > log,(c), for which it is immediate that 22V > 21°82(9)+N contra-
dicting the above. Therefore the statement is false. |

3.2-2 (p.60) | Prove equation (3.16), which states that a'°%:(¢) = clogs(a),

Use equation (3.15), which states that log,(y) = In(z)/In(y). Applying reversible operations to the equation
above, we reach a true statement, and so the original statement is true. Indeed,

alogs(c) — ogy(a) (given)
In(a'°8(¢)) = In(co8s(2)) (applying In to both sides)
log; (¢) In(a) = log,(a) In(c) (laws of logarithms)
In(c)In(a) In(a)ln(c) )
= t '].
n(b) () (equation 3.15)
which is true. |



3.2-8 (p.60) | Show that k1n(k) = ©(n) implies k = O(n/In(n)).
We are given that kIn(k) = ©(n), or that there exist positive constants c1, ¢z such that
0 < en < kln(k) < con. (3)

Dividing this inequality by In(n), we get

0<Cl gk

In(n) (4)

Since In(k)/In(n) — 0 as n — oo, we will keep ¢; as the lower bound constant to show that & = O(n/In(n)) (that
is, replacing In(k)/In(n) with the constant 1 does not change the truth of the middle inequality of ().

For the upper bound, use the left side of to note that

cn <kln(k) <k* = In(¢;) +In(n) <2In(k) = EEZ; <2- lllrll((ckl)) <2
for k large enough. Finally, rewrite k& and use the right side of to get
In(k) In(n n
b= klngn; lngkg s In(n) 2
Now we have that n n
0< C1m <k (2cQ)m
for n large enough, or in other words, that k is ©(n/In(n)). [ |

3.2 (p.61) | Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Q, w, or © of B.

Assume that k > 1, € > 0, and ¢ > 1 are constants. Your answer should be in the form of the table with “yes” or
“no” written in each boz.

The table is given below. Some justification is expected.

A B |lo]lo|la|w]|e]
logh (n) ne yes | yes | no | no | no
nk c" yes | yes | no | no | no
Vn nsin(n) no | no | no | no | no
2" on/2 no | no | yes | yes | no

plogz2(c)  cloga(n) || yeg | no | yes | no | yes

log,(n!) logy(n™) || yes | no | yes | no | yes

Here are some short justification arguments:

a. Any polynomial grows strictly faster than any logarithm.

b. Any exponential grows strictly faster than any polynomial.

c. The maxima of n*™(™ increase exponentially, yet it has value 1 periodically. However, the function \/n is
monotonically increasing past 1, so there are no relations among them in terms of growth.

d. Decreasing the base (from 2 to v/2 = 2'/2) of an exponential function makes it grow strictly slower.

e. Question 3.2-2 above shows both functions are the same.

f. Showing O and 2 involves ounding the sum. For O, use Stirling’s apporximation on page 57. ]



Show that the solution of T(n) = T(n — 1) +n is O(n?).

We find the answer by expressing T'(n) in terms of elements in the seqence that come before it. We find that
Tn)=Tn-1)+n

=Tn—-2)+(n—-1)+n
Tn—3)+n—-2)+n—-1)+n

3

=T(0)+ k
k=1
~T(0) + n(n2—|— 1)
= 0(n?),
as desired. m

Show that the solution of T(n) = T([n/2]) + 1 is O(logy(n)).

Similarly to above, we simplfy T'(n) to find
T(n)=T([n/2])+1=T(n/4])+2=T([n/8])+3=---=T(1) +c.

This terminates at 1 after a certain number of steps, say k. That is, after n/2" < 1 (because then 1 = [n/2F] =
[n/2F+1]), or when n < 2%, or when k < log,(n). Since c is the nmber of steps we've taken, it follows that
¢ = [logy(n)]. Hence the solution of T'(n) is O(logy(n)). [ |

* | 4.3-6 (p.87)| Show that the solution to T'(n) = 2T(|n/2] +17) + n is O(nlogy(n)).

4.4-1 (p.92) | Use a recursion tree to determine a good asymptotic upper bound on the recurrence T'(n) = 3T(|n/2])+

n. Use the substitution method to verify your answer.

We construct the tree as described in the book, summing all the elements of each row. We make the assumption
that n is a power of 2 and we ignore the floor function.

Tree Sum of elements in row

- n n
n/n\n ,
2 2 2 N
NG IND TN -
log, (n) O S SR S W S S SR (3)"n

L1 1111111111111 11111 O(ned)
The last row has (3/2)°82(")p elements, but
(%)logz(n) n = nlog2(3/2)p = ploga(3)~logs(2)+1 — plogs(3)

so we get the given result.



Taking the sum of the elements of each row, we get

3 3\ 2 3 log,(n)—1
T(n):n+n+<2) n+-~-+< ) n 4 O(n'os2()

2 2
logy(n)—1 3\ ?
= Z <2) n + O(n'oe:3))
i=0
logy(n
=n- M + O(n'oe2(3))

3/2-1
glogs (n) R
(e 1) + O6)

o - nloga(3)

= 9n4O(nlel®)
n
10g2 (3) _ 2n + @( log, 3))
_ O( log, (3 )7

where in the third line we used the formula for a finite geometric series (equation (A.5) on page 1147). This is our
asymptotic upper bound on the recurrence T'(n). [ ]

4.4-2 (p.92)| Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) = T(n/2)+n?
Use the substitution method to verify your answer.

This is the tree corresponding to the recurrence:

Tree Sum of elements in row
- n2 n2
|
2 2
T (3)
|
2 2
logy(n) T (%)
+ 1 o(1)
The last line, by the pattern of the sum of elements in each row, should have 221],;% = Zi = 1 element. Taking the

sum of the elements of each row, we get

w:m<%>2+<z>2+-~+<2b;m>2+@m

logy(n)—1 n2

-3 =

=0
B ]_/ )10g2 _
=n?. i1 —|— O(1)
= —3n? (nlz — 1) +0(1)
=3n?-3+0(1)
= 0(n?).

Note the constant —3 is absorbed into ©(1), giving us an asymptotic upper bound of O(n?). Note that this is actually
an asymptotically tight bound, so we could have written ©(n?) as well. |



% |4.4-4 (p.93)| Use a recursion tree to determine a good asymptotic upper bound on the recurrence T(n) =

9T (n—1) + 1.

* |4.4-5 (p.93)| Use a recursion tree to determine a good asymptotic upper bound on the recurrence T'(n) =

T(n—1)+T(n/2)+n.

4.4-8 (p.93)| Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(n — a) +

T(a)+ cn, where a > 1 and ¢ > 0 are constants.

This is the tree corresponding to the recurrence:

Tree Sum of elements in row

c(n —a) \ ca cn
/
c(n — 2a) \ ca T(0) / \ ca cn+0(1)
n/a / \ / \ / \
¢(n — 3a) ca 7(0) ca T(0) ca en+0(1)
/N /N /\ /\
c(n—4a)ca T(0) ca T(0) ca T(0) ca en+06(1)
1 T(.O) T(.O) T(.O) T(.O) T(.O) cn —I—.@(l)

Taking the sum of the elements of each row, we get
Tn)=cn+cen+en+0O(1)+---+cn+06(1)
= (n/a)-cn+ 6(1)
= (c/a)n® +©(1)
= 0(n?),

which is asymptotically tight because we did not introduce any slopiness into the calculations. |

% | 4.4-9 (p.93)| Use a recursion tree to give an asymptotically tight solution to the recurrence T(n) = T(an) +

T((1 — a)n) + cn, where a is a constant in the range 0 < o < 1 and ¢ > 0 is also a constant.

4.5-1 (p.96) | Use the master method to give tight asymptotic bounds for the following recurrences.

For all these @ = 2 and b =4, and log,(2) = 1/2.
a. T(n) =2T(n/4) + 1.
Since 1 is a constant, we can only say it is O(n'/?7¢), so case 1 applies, and T(n) = O(n'/2).

b. T'(n) = 2T(n/4) + +/n.
Since \/n = ©(n'/?), case 2 applies, and T'(n) = O(n'/?log,(n)).

c. T(n) =2T(n/4) + n.
Since n = Q(n'/?*¢) and 2-n/4 = 2n < 3n, where 3 > 1 is certainly a constant, case 3 applies, and T'(n) = O(n).

d. T(n) = 2T (n/4) + n?.
Since n = Q(n'/2%¢) and 2 - (n/4)?> = n?/8 < 2n?, where 2 > 1 is certainly a constant, case 3 applies, and
T(n) = O(n?). [ ]



4.5-3 (p.97) | Use the master method to show that the solution to the binary-search recurrence T'(n) = T(n/2)+0O(1)
is T(n) = O(logy(n)).

Here a = 1 and b = 2, so log,(1) = 0. Case 2 applies, because O(n'°¢2(1)) = ©(n®) = O(1), which is exactly the
f(n) term. Hence by the master method, T'(n) = ©(n'°82(1) log,(n)) = O(log,y(n)), as desired. |

4.5-4 (p.97)| Can the master method be applied to the recurrence T(n) = 4T(n/2) + n?logy(n)? Why or why not?

Give an asymptotic upper bound for this reccurence.

Here a = 4 and b = 2, so log,(4) = 2. Case 1 does not apply, because n?log,(n) is not bounded above by n?=¢
(that is, it is not O(n?~¢). Case 2 does not apply, because it is not bound above or below by n? (that is, it is not
O(n?)). Finally, case 3 also does not apply, because although n?log,(n) = Q(n?), it is not Q(n?¢), because any
positive power of n eventually grows faster than log,(n). Hence the master method can not be applied.

An asymptotic upper bound of O(n?log,(n)) may be found via the substitution or recurrence tree method. W



