
CS / MCS 401 Homework 1 grader solutions
assignment due June 20, 2016

written by Jānis Lazovskis
maximum points: 16

Questions from Appendix A.1, page 1149 in CLRS

A.1-1 Find a simple formula for
∑n

k=1(2k − 1).

We find the answer by splitting up the summand as
n∑

k=1

(2k − 1) = 2

n∑
k=1

k −
n∑

k=1

1 = 2 · n(n + 1)

2
− n = n2.

�

A.1-2 Show that
∑n

k=1 1/(2k − 1) = ln(
√
n) + O(1) by manipulating the harmonic series.

Rewrite the given series as the difference of two other series, by expanding out the sum:
n∑

k=1

1

2k − 1
=

1

1
+

1

3
+

1

5
+

1

7
+ · · ·+ 1

2n− 1

=

(
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

2n

)
−
(

1

2
+

1

4
+ · · ·+ 1

2n

)
=

2n∑
k=1

1

k
−

n∑
k=1

1

2k

= ln(2n) + O(1)− 1

2
ln(n) + O(1)

= ln(2) + ln(n)− 1

2
ln(n) + O(1)

=
1

2
ln(n) + O(1)

= ln(
√
n) + O(1).

Note that two expressions “O(1)” combine into one, and the constant ln(2) is also absorbed into it. �

A.1-3 Show that
∑∞

k=0 k
2xk = x(1 + x)/(1− x)3 for 0 < |x| < 1.

From the textbook we are given that
∑∞

k=0 kx
k = x/(1−x)2, so differentiating both sides with respect to x gives

d

dx

( ∞∑
k=0

kxk

)
=

d

dx

(
x

(1− x)2

)
∞∑
k=0

d

dx
(kxk) =

(1− x)2 − x · 2(1− x) · (−1)

(1− x)4

∞∑
k=1

k2xk−1 =
1− x + 2x

(1− x)3

∞∑
k=0

k2xk−1 =
1 + x

(1− x)3
.

Note that when differentiating, we lose the k = 0 term, but since it is zero in this case, we may add it back in without
changing the value of the expression. Now multiply both sides of the last line above by x to get

∞∑
k=0

k2xk =
x(1 + x)

(1− x)3
.

�
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A.1-4 Show that
∑∞

k=0(k − 1)/2k = 0.

Writing down the first few terms we may express the given sum differently, as

∞∑
k=0

k − 1

2k
= −1 + 0 +

1

22
+

2

23
+

3

24
+ · · · = −1 +

1

2

∞∑
k=0

k

(
1

2

)k

.

Since 0 < 1/2 < 1, we use the known formula for
∑∞

k=0 kx
k to get that

∞∑
k=0

k − 1

2k
= −1 +

1

2
· 1/2

(1− 1/2)2
= −1 +

1/4

1/4
= 0,

as desired. �

A.1-5 Evaluate the sum
∑∞

k=1(2k + 1)x2k.

Notice that the coefficient of x2k is one greater than its exponent, so we make an educated guess that the answer
will involve a derivative or an integral. Indeed, first note that

∞∑
k=0

x2k+1 = x

∞∑
k=0

(x2)k =
x

1− x2

for all |x2| < 1 (or equivalently, for |x| < 1). Take the derivative of the left and the right side (noting that we stay
at k = 0 because the first term x2·0+1 = x is not a constant) to get

∞∑
k=0

(2k + 1)x2k =
1− x2 − x · (−2x)

(1− x2)2
=

1 + x2

(1− x2)2
.

The zeroth term is (2 · 0 + 1)(x2·0) = 1, so

∞∑
k=1

(2k + 1)x2k =
1 + x2

(1− x2)2
− 1 =

1 + x2 − (1− x2)2

(1− x2)2
=

3x2 − x4

(1− x2)2
.

�

A.1-6 Prove that
∑n

k=1 O(fk(i)) = O(
∑n

k=1 fk(i)) by using the linearity property of summations.

Consider first the case with two functions f1 and f2. Recall the definition of O notation (on page 47 of CLRS),
which says that for some constants c1, c2, n1, n2,

O(f1) = {g : 0 6 g(n) 6 c1 · f1(n) for all n > n1},
O(f2) = {h : 0 6 h(n) 6 c2 · f2(n) for all n > n2}.

Let N = max{n1, n2} and C = max{c1, c2}, so the definitions of O(f1) and O(f2) hold for the constants C and N .
Indeed, we have that

O(f1) + O(f2) = {g + h : 0 6 g(n) 6 C · f1(n) and 0 6 h(n) 6 C · f2(n) for all n > N}
⊆ {g + h : 0 6 g(n) + h(n) 6 C(f1(n) + f2(n)) for all n > N}
= O(f1 + f2)

by adding up the two inequalities. Hence O(f1) + O(f2) ⊆ O(f1 + f2) as sets, but in big-O notation, we now say
that O(f1) + O(f2) is O(f1 + f2), enough for us to say that O(f1) + O(f2) = O(f1 + f2). This is similar to saying
that f = O(g) even though f is one of the many elements of the set O(g).

Since the statement is true for 2 functions, by repeating the process n times (there is an unfortunate choice of
index and function argument here), the result holds for a sum of n functions. �
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A.1-7 Evaluate the product
∏n

k=1 2 · 4k.

First note that 2 · 4k = 2 · 22k = 22k+1. Then take the logarithm of this product to get

log

(
n∏

k=1

2 · 4k
)

=

n∑
k=1

log(22k+1)

=

n∑
k=1

(2k + 1) log(2)

= log(2)

(
2

n∑
k=1

k +

n∑
k=1

1

)

= log(2)

(
2 · n(n + 1)

2
+ n

)
= log(2)(n2 + 2n)

= log(2n
2+2n).

Taking the exponential of both sides (or comparing the arguments of logarithms), we get that

n∏
k=1

2 · 4k = 2n
2+2n.

�
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A.1-8 Evaluate the product
∏n

k=2(1− 1/k2).

By taking logarithms and factoring, we get

log

(
n∏

k=2

1− 1

k2

)
=

n∑
k=2

log

(
1− 1

k2

)

=

n∑
k=2

log

(
k2 − 1

k2

)

=

n∑
k=2

log

(
(k + 1)(k − 1)

k2

)

=

n∑
k=2

(log(k + 1) + log(k − 1)− 2 log(k)) .

Consider the first few and last few terms, noting that there is cancellation that simplifies the sum:

k = 2 : log(3) log(1) −2 log(2)

k = 3 : log(4) log(2) −2 log(3)

k = 4 : log(5) log(3) −2 log(4)

k = 5 : log(6) log(4) −2 log(5)

...
...

...

k = n− 2 : log(n− 1) log(n− 3) −2 log(n− 2)

k = n− 1 : log(n) log(n− 2) −2 log(n− 1)

k = n : log(n + 1) log(n− 1) −2 log(n)

The only leftover terms are

log(1)− log(2) + log(n + 1)− log(n) = log

(
1 · (n + 1)

2 · n

)
,

and using the same justification as above,
n∏

k=2

1− 1

k2
=

n + 1

2n
.
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