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1. Warm up: Answer the following True / False questions.

(a) Every geometric series converges.

(b) Every alternating series converges.

C — a, converges, then a, converges.
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(a) Show that the series converges for 0 < a < e and diverges for a > e.

(b) For n > 2, use the inequality
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(c) Use part (c) to determine if the series converges if a = e.

3. Determine if each of the following series is alternating. If it is, determine if it is absolutely or
conditionally convergent.
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4. Use any tests you know to determine if the following series converge or diverge.
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5. Use any tests you know to determine if the following series converge or diverge.
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