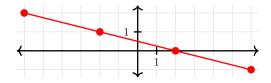
Worksheet 12

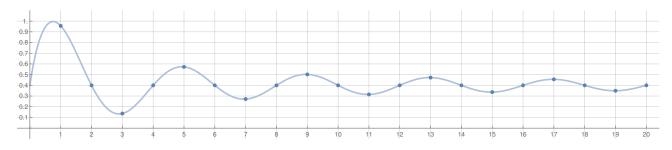
- 1. Warm up: Answer the following True / False questions.
 - (a) If the scalar product of two nonzero vectors is 0, then they are perpendicular.
 - (b) It is not possible for every two from a set of three vectors $\{\vec{v}, \vec{w}, \vec{z}\}$ to be perpendicular to each other.
 - (c) In the diagram below, the unmarked vector is $\vec{v} + \vec{w}$.

(d) In the diagram below, the red line is $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ and the marked points are for t = -3, -2, -1, 0.



- 2. Let ℓ be the line going through the points a = (1, 5, 2) and b = (6, 6, -3).
 - (a) Find three different ways to write the equation for ℓ , by using different values of t.
 - (b) For each of the three expressions for ℓ in part (a), find the equations of the plane going through $\ell(0)$ and to which ℓ is normal.
 - (c) There are infinitely many planes going through ℓ , but does every vector (x, y, z) lie in one of these planes? Why or why not?
- 3. Consider the planes 6x + 2y z = 3 and -2x + 3y z = 9.
 - (a) What are the normal vectors to each of these planes? Find the angle between them.
 - (b) Find the equation of the line of intersection of the two planes.
 - (c) The two planes intersect at p = (-1/2, 2, -2).
 - i. For the first plane, find a vector \vec{v} so that $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{p} + t\vec{v}$ is in the plane for all t.
 - ii. For the second plane, find a vector \vec{w} so that $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \vec{p} + t\vec{w}$ is in the plane for all t.
 - iii. Find the angle between \vec{v} and \vec{w} . How does your answer compare to part (a)? Should your answer be similar?

4. Consider the first 20 terms of a sequence $\{a_n\}_{n=1}^{\infty}$ below, along with a function f(x) with $f(n) = a_n$ for every $n \in \mathbb{N}$.



- (a) Does this sequence look convergent? If so, what do you think the limit will be?
- (b) Is this sequence monotonic? Is it bounded?
- (c) For $\epsilon_1 = \frac{3}{10}$ and $\epsilon_2 = \frac{1}{10}$, find $N_1, N_2 \in \mathbf{N}$ so that the epsilon definition of the limit satisfied, respectively.
- (d) Consider the sequence $\{b_n\}_{n=1}^{\infty}$ where $b_n = a_{2n}$ for every $n \in \mathbb{N}$. Is this sequence monotonic? Bounded? Convergent?
- 5. Knowing the sequence from Question 4 is $a_n = \frac{\sin(\pi n/2)}{n + \frac{4}{5}} + \frac{2}{5}$, answer the following questions.
 - (a) Compute $L = \lim_{n \to \infty} a_n$.
 - (b) For any $\epsilon > 0$, find $N \in \mathbf{N}$ so that the epsilon definition of the limit will be satisfied.
 - (c) For $\epsilon_1 = \frac{3}{10}$ and $\epsilon_2 = \frac{1}{10}$, find $N_1, N_2 \in \mathbf{N}$ using part (b) above. How does this compare with your estimate in part (c) of Question 4?