Worksheet 11

14 March 2022

- 1. Warm up: Answer the following True / False questions, for $\vec{v}, \vec{w} \in \mathbf{R}^3$ two vectors.
 - (a) If $|\vec{v}| = |\vec{w}|$, then $\vec{v} = \vec{w}$.
 - (b) If $|\vec{v}| = k$, then $|2\vec{v}| = 2k$.
 - (c) If $\vec{v} \bullet \vec{w} = k$, then $(2\vec{v}) \bullet \vec{w} = 2k$.
 - (d) If the angle between \vec{v} and \vec{w} is 0, then $\vec{v} \bullet \vec{w} = 0$.
 - (e) The scalar product of \vec{v} and \vec{w} is another vector in \mathbb{R}^3 .
- 2. Consider the points a = (0, 0, 4), b = (-1, 4, 2), c = (0, -3, 2), and d = (1, -2, -3) in \mathbb{R}^3 .
 - (a) Compute the vectors \overrightarrow{ab} and \overrightarrow{cd} .
 - (b) Find a point $e \in \mathbf{R}^3$ so that $|\overrightarrow{ae}| = |\overrightarrow{be}|$.
 - (c) Find a point $f \in \mathbf{R}^3$ so that $|\overrightarrow{af}| = |\overrightarrow{bf}| = |\overrightarrow{cf}|$.
 - (d) Does there exist a point $g \in \mathbf{R}^3$ so that $|\overrightarrow{ag}| = |\overrightarrow{bg}| = |\overrightarrow{cg}| = |\overrightarrow{dg}|$? If yes what is it? If no, why not?
- 3. Let $\vec{a} = (1, 1, 1)$ and $\vec{b} = (1, 1, 0)$ be vectors in \mathbb{R}^3 .
 - (a) Compute the magnitudes of \vec{a} and \vec{b} .
 - (b) What is the angle θ between \vec{a} and \vec{b} ?
 - (c) Find the unique vector of magnitude 1 that forms an angle of $\frac{\theta}{2}$ with both \vec{a}, \vec{b} .
 - (d) Find the two unique vectors of magnitude 1 that are perpendicular to both \vec{a}, \vec{b} .

4. Consider the matrix $A = \begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and the vectors $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{w} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

- (a) What are the magintudes $|\vec{v}|$ and $|\vec{w}|$? What is the angle between \vec{v} and \vec{w} ?
- (b) Find the magnitude of $A\vec{v}$, $A^2\vec{v}$, and $A^3\vec{v}$. What will the magnitude of $A^{1000}\vec{v}$ be?
- (c) Repeat part (b) above for \vec{w} instead of \vec{v} . Does the same thing happen? Why or why not?
- 5. Consider the vectors $\vec{v}, \vec{w}, \vec{z}$ as in the picture below. The inner circle has radius 1, and the outer circle has radius 2.

- \vec{v} makes an angle of $\frac{\pi}{2}$ with the positive *x*-axis \vec{w} makes an angle of $\frac{\pi}{3}$ with the positive *x*-axis \vec{z} makes an angle of $\frac{\pi}{6}$ with the negative *x*-axis
- (a) Compute the coordinates of the vectors $\vec{v}, \vec{w}, \vec{z}$. That is, express each as a pair of numbers in the horizontal and vectorial directions.
- (b) The three vectors form a triangle. Find the lengths of the sides of this triangle.
- (c) **Bonus:** If the three vectors were to change angle (but not length), what do you think would be the largest possible triangle they could form?