Math Lab

Recall the following definitions:

- A matrix is a collection of $m \cdot n$ numbers, presented as an array. A matrix with m rows and n columns is called an " $m \times n$ matrix", or an "m by n matrix".
- A vector is an $m \times 1$ matrix for some $m \in \mathbb{N}$. That is, a vector is a matrix with a single column. Vectors are often denoted with arrows, like \vec{x} and \vec{y} .
- 1. Warm up: Find vectors \vec{x} that make the following equalities $A\vec{x} = \vec{b}$ true.

(a)
$$\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} 5 \\ -6 \end{bmatrix}}_{\vec{b}}$$
 (b) $\underbrace{\begin{bmatrix} -1 & 0 & 2 \\ 0 & 2 & 0 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} 4 \\ -1 \end{bmatrix}}_{\vec{b}}$

2. The rotation matrix $R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ rotates every 2×1 vector counterclockwise by an angle of θ . For example, if $\theta = \frac{\pi}{6}$, then:

- (a) Calculate R^2 by matrix multiplication.
- (b) What will \mathbb{R}^n be, for any $n \in \mathbb{N}$?
- (c) Find a matrix S such that $S^2 = R$ (the square root of R). *Hint: think geometrically.*
- 3. This question is about the $n \times n$ identity matrix, denoted I_n .
 - (a) Let $A = \begin{bmatrix} 5 & 0 \\ 0 & 7 \end{bmatrix}$. Find a matrix B so that $AB = I_2$. Will $BA = I_2$ as well?
 - (b) Let $A = \begin{bmatrix} 5 & 14 \\ 0 & 7 \end{bmatrix}$. Find a matrix B so that $AB = I_2$.
 - (c) Let $A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$. Find a matrix B so that $AB = I_3$.
 - (d) For the rotation matrix R from question 2 above, find a matrix R' so that $R'R = I_2$.
- 4. Suppose that A, B are 3×3 matrices and that $A\vec{x} = B\vec{x}$ for every 3×1 vector \vec{x} . Show that A = B.
- 5. For each of the following systems of linear equations, find at least one solution in the appropriate spaces. If no solutions exist, say so.
 - (a) $5 + 4x_1 = 0$ in \mathbb{R}^2 (c) $1 + 2x_1 = 0$ in \mathbb{R}^2 $1 + 3x_1 = 0$

(b)
$$1 + 2x_1 = 0$$
 in \mathbb{R}^1
 $1 + 3x_1 = 0$
(d) $2 + 2x_1 = 0$ in \mathbb{R}^4
 $1 - x_2 = 0$
 $-2 + \pi x_3 = 0$