Worksheet 3

Recall the fundamental theorems of calculus (FTC). Both assume that f is continuous on (a, b).

1st FTC: $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ for any $x \in (a, b)$. **2nd FTC**: $\int_{a}^{b} f(t) dt = F(b) - F(a)$ for any antiderivative F of f.

The 2nd fundamental theorem of calculus is often called the **Newton–Leibniz formula**.

- 1. Warm up: Answer the following True / False questions.
 - (a) A function has a unique antiderivative.
 - (b) Even functions always have odd functions as antiderivatives.
 - (c) If f(a) > 0 for some number a, then F(a) > 0 as well, for F an antiderivative of f.
- 2. Compute the following integrals using the Newton–Leibniz formula.

(a)
$$\int_{1}^{4} \left(3\sqrt{x} - \frac{2}{x} \right) dx$$
 (c) $\int_{1}^{0} e^{x} dx$
(b) $\int_{0}^{\pi} -2\cos(x) dx$ (d) $\int_{-3}^{2} (3x^{2} + 4x) dx$

3. Suppose that $\int_1^4 f(x) \, dx = 8$ and $\int_1^6 f(x) \, dx = 5$. Evaluate the following definite integrals.

(a)
$$\int_{4}^{1} -3f(x) dx$$
 (b) $\int_{4}^{4} 5f(x) dx$ (c) $\int_{4}^{6} f(x) dx$ (d) $\int_{6}^{4} 2f(x) dx$

- 4. (a) Describe, in your own words, what is an even function and what is an odd function.
 - (b) Do functions that are neither even nor odd exist? If no, why? If yes, give an example.
 - (c) Are the two expressions the same or not? Why? $\int_{-1}^{1} \frac{1}{x^2} dx$ and $2 \int_{0}^{1} \frac{1}{x^2} dx$
- 5. Express the following shaded areas as integrals.

6. Draw pictures and use areas of triangles / rectangles / circles to evaluate the following integrals.

(a)
$$\int_{-1}^{2} \sqrt{4 - (x - 1)^2} + 2 \, dx$$
 (b) $\int_{2}^{6} |x - 3| + 2 - \frac{1}{2}(x + 1) \, dx$