2 December 2021

Recall the following definitions for a continuous function $f: \mathbf{R} \to \mathbf{R}$. The function f has a

- local minimum at $a \in \mathbf{R}$ if $f(a) \leq f(x)$ for all x in a small neighbourhood around a
- local maximum at $a \in \mathbf{R}$ if $f(a) \ge f(x)$ for all x in a small neighbourhood around a
- global minimum on $I \subseteq \mathbf{R}$ at $a \in I$ if $f(a) \leq f(x)$ for all $x \in I$
- global maximum on $I \subseteq \mathbf{R}$ at $a \in I$ if $f(a) \ge f(x)$ for all $x \in I$
- 1. Warm up: Answer the following questions.
 - (a) How many maxima can a continuous function with 2 local minima have?
 - (b) True or False: A monotonic function can not have any local minima or local maxima.
 - (c) Which of the functions on the given intervals have which of the following: local min, local max, global min, global max?

 x^{2} on [-3,5] x^{3} on [-1,10) $\sin(x)$ on $(-\pi,\pi/4]$ $\arctan(x)$ on **R**

2. (a) For each of the functions below, draw its derivative over the function.

- (b) The function g is not continuous at $x = \frac{\pi}{2} + k\pi$, for k = 0, 1, 2, 3. Is its derivative g' continuous at those points?
- (c) Draw the function f(x) g(x) on the interval $[0, 2\pi]$. What is its derivative?
- 3. Consider the function below and its graph.

- (a) Compute the first derivative f'(x). Is is continuous at x = -1, 0, 1?
- (b) Compute the second derivative f''(x). Is is continuous at x = -1, 0, 1?

- 4. Consider the functions $f_1(x) = |x 1|$ and $f_2(x) = |x + 1| + 1$.
 - (a) Graph $f_1(x)$, $f_2(x)$, and their sum $f(x) = f_1(x) + f_2(x)$.
 - (b) Find all maxima and minima of f, and label them as local and/or global.
 - (c) **Bonus:** Repeat the same process as in (b) for

$$g(x) = |x-3| - |x-2| + |x-1| + |x+1| - |x+2| + |x+3| + 1.$$

- 5. Consider the function $f(x) = \frac{6}{x^2+3}$.
 - (a) Find where f reaches its largest and smallest values.
 - (b) Find where the slopes of tangent lines of f are steepest (that is, have the largest positive values and the largest negative values).
 - (c) **Bonus:** Do the same as in part (b), but for f'.