
- 1. Warm up: Compute the derivative with respect to x of the following functions.
 - (a) x^{x} (b) $(x^{x})^{x}$ (c) $x^{(x^{x})}$ (d) $(x^{x})^{(x^{x})}$
- 2. Below is the graph of $(x^2 + y^2)^2 = 2x^2 2y^2$.

Just by looking at the graph, answer the following questions.

- (a) How many points on the graph are there for which $\frac{dy}{dx} = 0$?
- (b) Choose any real number c.
 - i. How many points on the graph are there for which $\frac{dy}{dx} = c$? ii. How many points on the graph are there for which $\frac{dx}{du} = c$?
- 3. For each relationship below, find the equation of the tangent line to the curve at the given point.
 - (a) $x^3 + xy + y^2 = 7$ at (2, 1)
 - (b) $(x+y)^{2/3} = y$ at (4,4)
- 4. Consider the implicitly defined relationship $y = x^2y^3 + x^3y^2$.
 - (a) What values of y satisfy the relationship when x = 1?
 - (b) Compute $\frac{dy}{dx}$ at x = 1.
 - (c) What values of x will satisfy $\frac{dx}{dy} = -1$ at y = 1?
- 5. A spherical balloon is inflated and its volume increases at a rate of $15cm^3/min$. What is the rate of change of its radius, per minute, when the radius is 10cm?