10 November 2021

Recall the following rules for differentiation:

- product rule: $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$
- quotient rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- chain rule: $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$
- 1. Warm up: Answer the following True / False questions.
 - (a) If a function is differentiable at a point a, then it is continuous at a.
 - (b) If a function is continuous at a point a, then it is differentiable at a.
 - (c) If $f(x) = 3x^2 2$, then f'(5) = f'(3) + f'(2).
 - (d) There is no difference betwen $\frac{d}{dx}(5x^2+2xy-3y^2)$ and $\frac{d}{dy}(5x^2+2xy-3y^2)$.
- 2. Differentiate the following functions, with respect to z.
 - (a) $\sqrt{z+2}\ln(z^3+2z)$ (c) $2\cos(z)^{z+1}$
 - (b) $\ln(\arctan(3^z)/\pi) + 22$ (d) $10z^2 + (e^{z+3}/e^3)^{z^2}$
- 3. Suppose f is a differentiable function with the following value for f and f' as given below.

x	f(x)	f'(x)	
0	3	-1	
1	5	0	
2	-2	3	
3	6	1	

Let $g(x) = x^2 - 3x + 2$. For each function below, calculate its derivative at the given point.

- (a) f(x) + g(x) at x = 0 (e) f(g(x)) at x = 0
- (b) $\frac{f(x)}{g(x)}$ at x = 1 (f) f(g(x)) at x = 1

(c)
$$f(x)g(x)$$
 at $x = 2$ (g) $g(f(x))$ at $x = 2$

(d)
$$\frac{f(x)g(x)}{f(x) + g(x)}$$
 at $x = 3$ (h) $g(f(x))$ at $x = 3$

4. The sine and cosine functions may be defined using the **imaginary number** *i*. The number *i* is not a real number, and is defined by its square $i^2 = -1$. The formulas are

$$\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}, \qquad \cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}.$$

- (a) Using these formulas, show that $\frac{d}{d\theta}\sin(\theta) = \cos(\theta)$ and $\frac{d}{d\theta}\cos(\theta) = -\sin(\theta)$.
- (b) Using the sum and difference formula for $\sin(a \pm b)$ and $\cos(a \pm b)$, express $\sin(x+iy)$ and $\cos(x+iy)$ in terms of the exponential function.
- 5. Recall the following functions and their derivatives:

$$f(x)$$
 $\sin(x)$ $\cos(x)$ $\tan(x)$ $\csc(x)$ $\sec(x)$ $\cot(x)$ $f'(x)$ $\cos(x)$ $-\sin(x)$ $\sec^2(x)$ $-\cot(x)\csc(x)$ $\sec(x)\tan(x)$ $-\csc^2(x)$

(a) For each of the triangles below and the condition given, find the missing side lengths.

(b) Use the chain rule and the definitions of the inverse trigonometric functions, like sin(arcsin(x)) = x, to complete the table of derivatives below.

f(x)	$\arctan(x)$	$\arccos(x)$	$\arctan(x)$	$\operatorname{arccsc}(x)$	$\operatorname{arcsec}(x)$	$\operatorname{arccot}(x)$
f'(x)						