Worksheet 11

- 1. Warm up: Answer the following True / False questions.
 - (a) If $\lim_{x \to 0} f(x) = 1$, then $\lim_{x \to 0} (f(x) 1) = 0$.
 - (b) For any two functions f and g, $\lim_{x\to 5} f(x) + \lim_{x\to 5} g(x) = \lim_{x\to 5} f(x) + g(x)$.
 - (c) Every function f has a tangent line at f(x), for all $x \in D_f$.
 - (d) As long as $\lim_{x\to 0} f(x)$ exists, $\lim_{x\to 0} 2f(x) \ge \lim_{x\to 0} f(x)$.
- 2. The floor function $\lfloor x \rfloor$ gives to every real number x the value of the largest integer less than or equal to x. The ceiling function $\lceil x \rceil$ gives to every real number x the value of the smallest integer larger than or equal to x.
 - (a) Draw the graph of $\lfloor x \rfloor$.

(b) What is the range?

- (d) What is the range?
- (e) Do these functions have inverses everywhere / nowhere / on a subset of the domain?
- (f) Below are two functions f and g. Draw the graphs |f(x)| and |g(x)| over them.

(g) **Bonus:** Find an equation that relates $\lfloor x \rfloor$ and $\lceil x \rceil$.

3. Consider the piecewise function:

$$f(x) = \begin{cases} x^2 & \text{if } x \leqslant -1, \\ ax + b & \text{if } -1 < x < 2, \\ |x| & \text{if } x \geqslant 2. \end{cases}$$

(a) Find a pair of real numbers a, b that make the function f have no jumps.

(b) For the a, b you found, graph the function on the grid below.

4. Compute the average rate of change of the function $f(x) = 45 \sin(x)^2 + 22x^3 - 4$ on the interval $[0, \pi]$.

5. Find a general expression for the average rate of change of the function f(x) = x(x - a) on the interval [a - h, a].