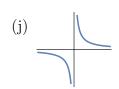
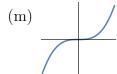
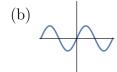
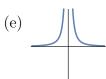
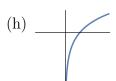

Worksheet 9

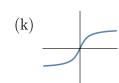

6 October 2021

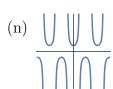

- 1. Warm up: Answer the following questions with True or False.
 - (a) If $x \in [1, \infty)$, then n > m implies $x^n \ge x^m$, for $n, m \in \mathbb{N}$.
 - (b) If $x \in [0, 1]$, then n > m implies $x^n \ge x^m$, for $n, m \in \mathbf{N}$.
 - (c) As x goes to ∞ , the value of $f(x) = a^x$ also goes to ∞ , for any positive $a \in \mathbf{R}$.
 - (d) There exists some $b \in \mathbf{R}$ such that a^b never changes, for every positive $a \in \mathbf{R}$.
- 2. For each of the following functions, find their range (assuming the domain is \mathbf{R}) and inverse function. Or, state why the inverse does not exist.
 - (a) f(x) = 3x
 - (b) q(x) = 5 9x
 - (c) $h(x) = x^2 + 2$
 - (d) $k(x) = x^3 1$
 - (e) $\ell(x) = 3e^{2x} 10$
- 3. Identify the following graphs with the given trigonometric functions.

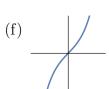


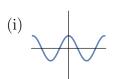


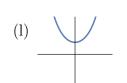


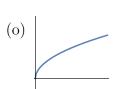












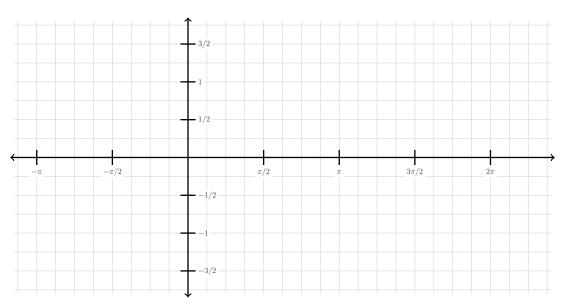
- e^x
- $\csc(x)$
- $\cot(x)$
- $\cos(x)$
- x^3

- $\sin(x)$
- $\log(x)$
- \sqrt{x}
- $1/x^{2}$
- sec(x)

- $\cosh(x)$
- $\arctan(x)$
- 1/x
- tan(x)
- sinh(x)

4. Draw the graphs of the following functions.

$$\sin(x)$$


$$\sin(x) + \frac{1}{2}$$

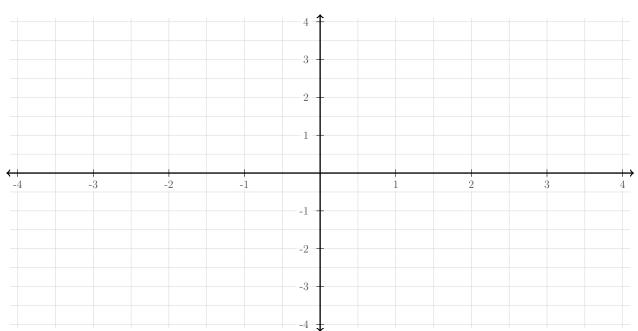
$$\sin\left(x+\frac{\pi}{2}\right)$$

$$\frac{3}{2} \cdot \sin(x)$$

$$\sin(x) + \frac{1}{2}$$
 $\sin\left(x + \frac{\pi}{2}\right)$ $\frac{3}{2} \cdot \sin(x)$ $\frac{\sin(2x) + 1}{2}$ $\cos\left(\frac{x}{2}\right)$

$$\cos\left(\frac{x}{2}\right)$$

5. Draw the graphs of the following functions.


$$\frac{1}{x}$$

$$\frac{2}{x}$$

$$\frac{1}{2x} + 2$$

$$\frac{1}{x+2}$$

$$\frac{1}{2x} + 2 \qquad \qquad \frac{1}{x+2} \qquad \qquad \frac{3-2x}{x-1}$$

