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A binomial is a polynomial with two terms, such as 3x + 4 or 10x2 − 5x5. The binomial
theorem says what the expansion of the nth power of a binomial looks like, such as (3x + 4)5

for n = 5 or (1− x2 − 5x5)15 for n = 15:
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This is useful when you are asked what the coefficient of xk will be in the expansion of (ax+b)n,
for some k = 1, 2, . . . , n. By the binomial theorem, the coefficient will be

an−k · bk ·
(
n
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)
=

an−k · bk · n!

k!(n− k)!
.

A sum is a number that results from adding other numbers, called summands. The summa-
tion symbol Σ indicates a very long sum whose summands follow a particular pattern:
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The method of mathematical induction is way to prove general statements that depend on
some number n ∈ N. If the statement is P (n), the method is as follows:

1. (Base case) Show that P (1) is true.

2. (Inductive hypothesis) Assume that P (k) is true for k > 1

3. (Inductive step) Show that P (k + 1) is true

Sometimes the base case uses a number larger than 1, because P (n) only holds for n > 4.

1. Warm up: What is the coefficient of x5 in each of the following cases? Do not simplify.

(2x + 1)10
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)55

(1 + 2x + 3 + 4x)7
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3. Evaluate the following sums.
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4. Let P (n) be the following statement: n! > 2n

(a) Check if the statements P (1), P (2), P (3), P (4), P (5) are true or false.

(b) Prove the statement by induction, for n > 4.

5. Bonus: Using induction, prove that 22n−1 +32n−1 is always divisible by 5, for any n ∈ N.


