Recall the big theorems related to a polynomial p(x):

- **Remainder theorem:** Dividing p(x) by x k leaves the remainder p(k)
- Factor theorem: $k \in \mathbf{R}$ is a root of p(x) iff dividing p(x) by x k leaves the remainder 0
- Integer root theorem: $k \in \mathbb{Z}$ is a root of p(x) only if k divides the constant term of p(x)
- Rational root theorem: $\frac{a}{b} \in \mathbf{Q}$ is a root of p(x) only if a divides the constant term of p(x) and b divides the leading coefficient of p(x)

You will not be tested on the last theorem in homeworks / exams.

1. Warm up: Use the remainder theorem to determine the value of p(k) in each case.

$$\frac{p(x)}{x-k} = 3x^2 + 2x - 4 + \frac{7}{x-k} \qquad \qquad \frac{p(x)}{x} = 10x - 10x^{-1} \qquad \qquad \frac{p(x)}{x-k} = 99 - 99x^2$$

- 2. For each of the following polynomials p(x), use the integer root theorem to find all potential integer roots k, then check if p(k) = 0 and use the factor theorem to determine the roots.
 - (a) $x^2 8x + 15$ (b) $x^2 + 4x - 12$ (c) $x^2 - 6x - 7$ (d) $x^3 - 3x^2 - 28x$ (e) $x^3 - 8x^2 - 33x$ (f) $x^3 - 2x^2 - 13x - 10$
- 3. For each part in this question, p(x) is a different polynomial.
 - (a) Let p(x) be a degree 4 polynomial whose roots are 2, 3, 5, 7. What is p(x)?
 - (b) You are given that p(1) = 2 and p(3) = 4, and that dividing p(x) by x 2 leaves a remainder 0. What is p(x)?
 - (c) The remainder when p(x) is divided by x 2 is 9. What is the remainder when $x \cdot p(x)$ is divided by x 2?
- 4. This question will work through the proof of the **rational root theorem**. Let $f(x) = a_n x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ be a polynomial, with $a_i \in \mathbf{Z}$ for all i, and $a_n \neq 0$.
 - (a) Suppose that f has a root that is a rational number $\frac{p}{q}$, assuming gcd(p,q) = 1. Write the equation for the value of f at this root.
 - (b) Simplify the equation from part (a) so that there are no denominators.
 - (c) Isolate on one side of the equation all the terms from part (b) that contain p as a factor. What is left on the other side? What does this mean?
 - (d) Isolate on one side of the equation all the terms from part (b) that contain q as a factor. What is left on the other side? What does this mean?