Worksheet 3

15 September 2021

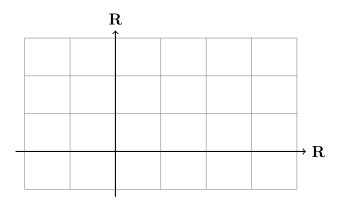
In this worksheet we will use the following definitions.

- A **polynomial** is a finite sum of real numbers a_n multiplying different powers of variables x^n . For example, 3x + 2 and $9x^2 10x^{10}$ are polynomials.
- The **degree** of a polynomial f(x) is the largest power of x appearing in the sum, whose real number coefficient is not zero. It is denoted deg(f). For example, the degree of $4x^3 1$ is 3, even though this may be written as $4x^3 1 + 0 \cdot x^5$.
- A real number r is a **root** or **zero** of a polynomial f(x) if f(r) = 0. Not all polynomials have roots. Polynomials can have at most deg(f) roots.
- 1. Warm up: Indicate which of the following functions are polynomials and which are not.

$$f(x) = \frac{1}{2}x^{2} + \pi x + 2$$

$$g(x) = 3x^{2} - x^{2/3}$$

$$h(x) = x^{2} + 2^{x}$$


$$k(x) = 5x^{2} + 4x + 3 + 2x^{-1}$$

$$\ell(x) = 0$$

$$m(x) = \sum_{n=1}^{1000} nx^{n}$$

$$q(x) = \sum_{n=1000}^{\infty} nx^{n}$$

- 2. This question is about solving inequalities.
 - (a) For what values of x is the inequality $x^2 + x 2 > 0$ true?
 - (b) Construct a quadratic function f(x) so that the solution to f(x) < 0 is $x \in (-5, -1)$.
 - (c) Find another quadratic function g(x) for which the solution to g(x) < 0 is the same as in part (b). How many different functions with this same solution do there exist?
 - (d) Suppose that the solution to $f(x) \ge 0$ is $x \in [0,3]$ and the solution to $g(x) \ge 0$ is $x \in [2,4]$. What is the solution to $f(x)g(x) \ge 0$?
- 3. This question is about absolute value inequalities.
 - (a) Draw the functions y = |x| and y = |x 2| on the grid below.
 - (b) Shade in the area where both $y \ge |x|$ and $y \ge |x-2|$ are satisfied. Find a function f(x) so that $y \ge f(x)$ has this same area as it solution set.

- 4. This question is about polynomial division.
 - (a) Use polynomial division to simplify the expression $\frac{10x^3 3x + 15}{3x 2}$.
 - (b) Find the roots of $x^4 + 2x^3 25x^2 26x + 120$ with polynomial division. You may assume that the roots are integers in the set $\{-5, \ldots, 5\}$,