- 1. Warm up: Answer the following questions.
 - (a) What is the slope of the line perpendicular to the tangent line of $y = x^2$?
 - (b) How many times does the chain rule need to be applied to differentiate the following function with respect to x: $f(x) = \ln\left(\arcsin\left(\sqrt{\cos^2((e^x)^2) + 2\sin^2(e^{2x}) 1}\right) + 1\right)$
 - (c) True or False: The closer a linear approximation of f is taken to a particular value, the better estimate it will have of f of that value.
- 2. Evaluate the following limits using l'Hôpital's rule and other differentiation rules you know.
 - (a) $\lim_{x \to 1} \frac{x^n 1}{x 1}$ (b) $\lim_{x \to 0^+} \frac{\tan(4z)}{\tan(7z)}$ (c) $\lim_{x \to 2^+} \frac{1}{x 2} \frac{1}{\ln(x 1)}$ (e) $\lim_{x \to 0^+} \frac{\sin(x) x}{x^3}$ (f) $\lim_{x \to 0^+} (\cos(x) 1)^x$ (g) $\lim_{x \to \pi/2^+} \frac{\sec(x)}{1 + \tan(x)}$ (h) $\lim_{x \to 0^+} \frac{2\ln(e^x 1)}{\ln(3x)}$
- 3. Let L_0 be the linear approximation of x^2 at 0, and L_k the linear approximation of x^2 at (k, k^2) . Find the point (x, y) where L_0 intersects L_k .
- 4. Let $L_a(x)$ be the linear approximation to $\cos(x)$ at x = a.
 - (a) At which value in $[0, \pi/2]$ are the differentials from $L_0(x)$ and $L_{\pi/2}(x)$ equal?
 - (b) At which value in $[-\pi/2, \pi/2]$ are the differentials from $L_{\pi/2}(x)$ and $L_{-\pi/2}(x)$ equal?
- 5. Suppose that at price p, for $p \in (0, 10)$, the demand for a product is f(p) kg, where $f(p) = 120 2p p^2$.
 - (a) What is the price elasticity of demand when p = 5?
 - (b) What is the average elasticity of demand in the price interval [5,7]?
 - (c) Is demand for this product elastic or inelastic on the domain (0, 10)? Why?