Recall the following functions and their derivatives:

f(x)	$\sin(x)$	$\cos(x)$	$\tan(x)$	$\arcsin(x)$	$\arccos(x)$	$\arctan(x)$
f'(x)	$\cos(x)$	$-\sin(x)$	$\sec^2(x)$	$\frac{1}{\sqrt{1-x^2}}$	$\frac{-1}{\sqrt{1-x^2}}$	$\frac{1}{1+x^2}$

- 1. Warm up: Recall the geometric formulas for right-angled triangles.
 - (a) For the triangle below, what are the values of $\sin(\theta)$, $\cos(\theta)$, $\tan(\theta)$?
- (b) For the triangle below, you are given that $\arcsin(c) = \alpha$. What are the values of $\sec(\alpha)$ and $\cot(\alpha)$?

- 2. Compute the derivative with respect to x of the following functions.
 - (a) x^x (b) $(x^x)^x$ (c) $x^{(x^x)}$ (d) $(x^x)^{(x^x)}$
- 3. Recall the following identities:
 - $\tan^2(x) + 1 = \sec^2(x)$ $\csc(x) = \frac{1}{\sin(x)}$
 - $1 + \cot^2(x) = \csc^2(x)$ $\sec(x) = \frac{1}{\cos(x)}$

Using these, complete the table of derivatives below.

- 4. Differentiate the following functions, with respect to z.
 - (a) $\sqrt{z+2}\ln(z^3+2z)$ (c) $2\cos(z)^{z+1}$
 - (b) $\ln(\arctan(3^z)/\pi) + 22$ (d) $10z^2 + (e^{z+3}/e^3)^{z^2}$