Recall the following rules for differentiation:

- product rule: $\frac{d}{dt}$ dx $f(x)g(x) = f'(x)g(x) + f(x)g'(x)$ • quotient rule: $\frac{d}{dx} \left(\frac{f(x)}{g(x)} \right)$ $g(x)$ \setminus = $f'(x)g(x) - f(x)g'(x)$ $g(x)^2$ • chain rule: $\frac{d}{1}$ dx $(f(g(x))) = f'(g(x))g'(x)$
- 1. Warm up: Answer the following True / False questions.
	- (a) If a function is differentiable at a point a , then it is continuous at a .
	- (b) If a function is continuous at a point a , then it is differentiable at a .
	- (c) If $f(x) = 3x^2 2$, then $f'(5) = f'(3) + f'(2)$.
	- (d) There is no difference betwen $\frac{d}{dx}$ $(5x^2 + 2xy 3y^2)$ and $\frac{d}{dy}$ $(5x^2 + 2xy 3y^2)$.
- 2. Differentiate the following functions.

(a)
$$
4x^2 - 2x + 5/2
$$

\n(b) $\frac{\sin(2x)}{3x^2 + \tan(x+1)}$
\n(c) $(e^{2x-5} - 2) \left(\sqrt{6x + \sqrt{x}} - \frac{1}{x}\right)$
\n(d) $\frac{1 + \frac{e^x}{\ln(x)}}{\frac{4x^2}{\cos(x)} - 2x}$

- 3. Show that the quotient rule is simply the product rule followed by the chain rule.
- 4. (a) Consider a circle C of radius r .
	- i. What is the circumfrence of C?
	- ii. What is the area of C?
	- iii. What is the derivative of the area of C , with respect to r ?
	- (b) Consider a sphere S of radius r .
		- i. What is the surface area of S?
		- ii. What is the volume of S?
		- iii. What is the derivative of the volume of S , with respect to r ?

5. Suppose f is a differentiable function with the following value for f and f' as given below.

Let $g(x) = x^2 - 3x + 2$. For each function below, calculate the derivative at the given point.

- (a) $f(x) + q(x)$ at $x = 0$ (b) $\frac{f(x)}{f(x)}$ $g(x)$ at $x = 1$ (c) $f(x)g(x)$ at $x=2$ (d) $\frac{f(x)g(x)}{f(x)+f(x)}$ $f(x) + g(x)$ at $x = 3$ (e) $f(g(x))$ at $x=0$ (f) $f(g(x))$ at $x=1$ (g) $g(f(x))$ at $x = 2$ (h) $g(f(x))$ at $x=3$
- 6. The hyperbolic sine and cosine are defined as $sinh(\theta) = \frac{e^{\theta} e^{-\theta}}{2}$ $\frac{e^{-e^{-\theta}}}{2}$ and $\cosh(\theta) = \frac{e^{\theta} + e^{-\theta}}{2}$ $\frac{e^{-v}}{2}$. Regular sine and cosine may be define similarly, using the **imaginary number** i , for which $i^2 = -1$. The formulas are $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ $\frac{-e^{-i\theta}}{2i}$ and $\cos(\theta) = \frac{e^{i\bar{\theta}}+e^{-i\theta}}{2}$ $\frac{e^{-i\theta}}{2}$.

(a) Show that
$$
\frac{d}{d\theta}\cosh(\theta) = \sinh(\theta)
$$
 and $\frac{d}{d\theta}\sinh(\theta) = \cosh(\theta)$.

(b) Using the sum and difference formula for $sin(a \pm b)$ and $cos(a \pm b)$, express $sin(x+iy)$ and $cos(x + iy)$ with the exponential function.