Recall the following rules for differentiation:

- product rule: $\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)$
- quotient rule: $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) f(x)g'(x)}{g(x)^2}$
- chain rule: $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$
- 1. Warm up: Answer the following True / False questions.
 - (a) If a function is differentiable at a point a, then it is continuous at a.
 - (b) If a function is continuous at a point a, then it is differentiable at a.
 - (c) If $f(x) = 3x^2 2$, then f'(5) = f'(3) + f'(2).
 - (d) There is no difference betwen $\frac{d}{dx}(5x^2 + 2xy 3y^2)$ and $\frac{d}{dy}(5x^2 + 2xy 3y^2)$.
- 2. Differentiate the following functions.

(a)
$$4x^2 - 2x + 5/2$$

(b) $\frac{\sin(2x)}{3x^2 + \tan(x+1)}$
(c) $(e^{2x-5} - 2)\left(\sqrt{6x + \sqrt{x}} - \frac{1}{x}\right)$
(d) $\frac{1 + \frac{e^x}{\ln(x)}}{\frac{4x^2}{\cos(x)} - 2x}$

- 3. Show that the quotient rule is simply the product rule followed by the chain rule.
- 4. (a) Consider a circle C of radius r.
 - i. What is the circumfrence of C?
 - ii. What is the area of C?
 - iii. What is the derivative of the area of C, with respect to r?
 - (b) Consider a sphere S of radius r.
 - i. What is the surface area of S?
 - ii. What is the volume of S?
 - iii. What is the derivative of the volume of S, with respect to r?

5. Suppose f is a differentiable function with the following value for f and f' as given below.

x	f(x)	f'(x)
0	3	-1
1	5	0
2	-2	3
3	6	1

Let $g(x) = x^2 - 3x + 2$. For each function below, calculate the derivative at the given point.

- (a) f(x) + g(x) at x = 0(b) $\frac{f(x)}{g(x)}$ at x = 1(c) f(x)g(x) at x = 2(d) $\frac{f(x)g(x)}{f(x) + g(x)}$ at x = 3(e) f(g(x)) at x = 0(f) f(g(x)) at x = 1(g) g(f(x)) at x = 2(h) g(f(x)) at x = 3
- 6. The hyperbolic sine and cosine are defined as $\sinh(\theta) = \frac{e^{\theta} e^{-\theta}}{2}$ and $\cosh(\theta) = \frac{e^{\theta} + e^{-\theta}}{2}$. Regular sine and cosine may be define similarly, using the **imaginary number** *i*, for which $i^2 = -1$. The formulas are $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ and $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$.

(a) Show that
$$\frac{d}{d\theta}\cosh(\theta) = \sinh(\theta)$$
 and $\frac{d}{d\theta}\sinh(\theta) = \cosh(\theta)$.

(b) Using the sum and difference formula for $\sin(a \pm b)$ and $\cos(a \pm b)$, express $\sin(x+iy)$ and $\cos(x+iy)$ with the exponential function.