8 October 2020

- 1. Warm up: Answer the following questions with True or False.
 - (a) If $x \in [1, \infty)$, then n > m implies $x^n \ge x^m$, for $n, m \in \mathbf{N}$.
 - (b) If $x \in [0, 1]$, then n > m implies $x^n \ge x^m$, for $n, m \in \mathbf{N}$.
 - (c) As x goes to ∞ , the value of $f(x) = a^x$ also goes to ∞ , for any positive $a \in \mathbf{R}$.
 - (d) There exists some $b \in \mathbf{R}$ such that a^b never changes, for every positive $a \in \mathbf{R}$.
- 2. For each of the following functions, find their range (assuming the domain is \mathbf{R}) and inverse function. Or, state why the inverse does not exist.
 - (a) f(x) = 3x
 - (b) g(x) = 5 9x
 - (c) $h(x) = x^2 + 2$
 - (d) $k(x) = x^3 1$
 - (e) $\ell(x) = 3e^{2x} 10$
- 3. Identify the following graphs with the given trigonometric functions.

4. Draw the graphs of the following functions.

5. Draw the graphs of the following functions.

