$24 \ {\rm September} \ 2020$

The binomial coefficient. A binomial is a polynomial with two terms, such as ax + b. The coefficient of x^k in the expansion of $(ax + b)^n$, for $0 < k \le n$, is $\binom{n}{k} := \frac{n!}{k!(n-k)!}$ times $a^k b^{n-k}$.

Principle of Mathematical Induction. If $S \subset \mathbf{N}$ is a set for which

- $1 \in S$, and
- if $n \in S$, then $n + 1 \in S$,

then $S = \mathbf{N}$.

- 1. Warm up: Factor the following polynomials using the integer root theorem.
 - (a) $x^2 8x + 15$ (d) $x^3 3x^2 28x$ (b) $x^2 + 4x 12$ (e) $x^3 8x^2 33x$ (c) $x^2 6x 7$ (f) $x^3 2x^2 13x 10$
- 2. Using the definition of $\binom{n}{k}$ above, for $0 < k \leq n$, prove the following statements.
 - (a) $\binom{n}{k} = \binom{n}{n-k}$
 - (b) $\binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k}$

(c) Prove by induction on
$$n$$
 that $\sum_{k=0}^{n} k \binom{n}{k} = n \cdot 2^{n-1}$. Use the identity $\sum_{k=1}^{n} \binom{n}{k} = 2^{n}$.

- 3. Prove the following statements by induction.
 - (a) $2^{2n-1} + 3^{2n-1}$ is divisible by 5 for all $n \in \mathbf{N}$.
 - (b) $n! > 2^n$ for all $n \in \mathbf{N}_{\geq 4}$.
 - (c) $(1+x)^n \ge 1+nx$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}_{>-1}$.
- 4. Consider the sums $A = \sum_{n=1}^{\infty} n$ and $B = \sum_{n=1}^{\infty} -n$.
 - (a) What does A + B equal?
 - (b) What does A B equal?
 - (c) For $C = \sum_{n=1}^{\infty} 1 n$, what does A + C equal?