17 September 2020

In this worksheet we will use the following definitions.

- A rational number is a real number of the form $\frac{p}{q}$, where $p \in \mathbb{Z}$ and $q \in \mathbb{Z}_{\neq 0}$.
- A divisor, or factor of $p \in \mathbb{Z}$ is a number $d \in \mathbb{Z}$ such that dividing p by d gives a remainder of 0. That is, there is some $q \in \mathbb{Z}$ such that p = dq.
- A number $p \in \mathbf{Z}$ is **prime** if its only positive divisors are 1 and itself.
- The greatest common denominator of $p, q \in \mathbb{Z}$ is the largest number that divides both p and q. That is, it is their largest common divisor. This is written gcd(p,q).
- 1. Warm up: Indicate which of the following functions are polynomials and which are not.

$$f(x) = \frac{1}{2}x^{2} + \pi x + 2$$

$$g(x) = 3x^{2} - x^{2/3}$$

$$h(x) = x^{2} + 2^{x}$$

$$k(x) = 5x^{2} + 4x + 3 + 2x^{-1}$$

$$\ell(x) = 0$$

$$m(x) = \sum_{n=1}^{1000} nx^{n}$$

$$q(x) = \sum_{n=1000}^{\infty} nx^{n}$$

- 2. Recall that saying $|x| \leq y$ is the same as saying $-y \leq x \leq y$.
 - (a) Show that $|ab| \leq \frac{1}{2}(a^2 + b^2)$ for all $a, b \in \mathbf{R}$.
 - (b) Show that $|a + b| \leq |a| + |b|$ for all $a, b \in \mathbf{R}$.
- 3. (a) What are the only possible integer roots of $10x^{10} 3x^5 + 17$?
 - (b) Use polynomial division to simplify the expression $\frac{10x^3 3x + 15}{3x 2}$.
 - (c) Find the roots of $x^4 + 2x^3 25x^2 26x + 120$ with polynomial division. You may assume that the roots are integers in the set $\{-5, \ldots, 5\}$,
- 4. Recall that the set **Z** has no largest element.
 - (a) Use this to show that for any $c \in \mathbf{Q}_{>0}$, there exists $d \in \mathbf{Z}_{>0}$ with $0 < \frac{1}{d} < c$.
 - (b) Use this to show that for any $c, e \in \mathbf{Q}$ with c < e, there exists $d \in \mathbf{Q}$ with c < d < e.
- 5. This question will work through the proof of the **rational root theorem**. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial, with $a_i \in \mathbf{Z}$ for all i, and $a_n \neq 0$.
 - (a) Suppose that f has a root that is a rational number $\frac{p}{q}$, assuming gcd(p,q) = 1. Write the equation for the value of f at this root.
 - (b) Simplify the equation from part (a) so that there are no denominators.
 - (c) Isolate on one side of the equation all the terms from part (b) that contain p as a factor. What is left on the other side? What does this mean?
 - (d) Isolate on one side of the equation all the terms from part (b) that contain q as a factor. What is left on the other side? What does this mean?