10 September 2020

In this worksheet we will use the following definitions.

- A statement, or proposition, is a collection of symbols that have some mathematical meaning. Examples are "2 + 2 = 4" or "2 + 2 = 5" or "Every prime number is the sum of three prime numbers." Statements are denoted by letters, such as P, Q. If a statement P depends on a variable x, we write P(x).
- The value of a statement, when it can be proved, is either *true*, denoted T, or *false*, denoted F. Some statements have no value, such as "Three number circle never plus 9."
- The negation of a statement P, denoted ¬P, is the opposite statement, pronounced "not P". For example, if P is the statement "Every dog is gray", then ¬P is the statement "Not all dogs are gray." If P is true, then ¬P is false, and if P is false, then ¬P is true.
- 1. Warm up 1: Complete the following table of values.

Р	Q	$P \lor Q$	$P \wedge Q$	$P \implies Q$	$P \iff Q$
True	True				
True	False				
False	True				
False	False				

2. Warm up 2: Complete the following table of values.

Р	Q	$\neg P$	$\neg P \land \neg Q$	$\neg P \vee \neg Q$	$P \wedge \neg Q$	$\neg P \iff \neg Q$
True	True					
True	False					
False	True					
False	False					

- 3. Consider the columns in the previous two questions.
 - (a) Which columns in the previous two questions are the same?
 - (b) Which columns are exact opposites of each other?
 - (c) Give your reponses to parts (a) and (b) as logical statements.

- 4. Give negations of the following statements.
 - (a) If I am older than 21 then I am older than 18.
 - (b) You are rich or you are happy.
 - (c) Everyone living in Rīga was born in Rīga.
 - (d) There is a person older than 120.
 - (e) If |x| < |y|, then $x^2 < y^2$.
 - (f) If x is rational then x^2 is rational and \sqrt{x} is irrational.
- 5. Consider the following statements, and say wether or not they are true. Explain your reasoning, and provide a counterexample for the statements you think are false.
 - (a) There is a largest natural number.
 - (b) For all natural numbers n, the number $3n^2 + 3n + 23$ is prime.
 - (c) The square of an even natural number is always even.
 - (d) The sum of two rational numbers is a rational number.
 - (e) The sum of a rational and an irrational number is a rational number.
 - (f) Between any two rational numbers there is another rational number.
 - (g) Between any two rational numbers there is an irrational number.
- 3. Consider the following curves and find their points of intersection.
 - (a) y = 4x + 1 and y = -5x + 1
 - (b) $y = x^2 x 6$ and $y = 2x^2 6x 6$
 - (c) $y = 4x^3 5x + 8$ and $y = 4x^3 + 5x^2 + 2$
- 4. Let A be a set. An **identity element** for a function $f: A^2 \to A$ is an element e of A such that f(e, a) = a = f(a, e) for all a in A.
 - (a) Which of the following functions have an identity element and which do not? Those that do, what is it?
 - i. $(x,y) \mapsto x+y$ ii. $(x,y) \mapsto x \cdot y$ iii. $(x,y) \mapsto (x+y)^2$
 - (b) Suppose that there are two elements $e_1, e_2 \in A$ that satisfy the given condition for being an identity element. Show that $e_1 = e_2$.