Week of 26 November 2018

1. Use English sentences and mathematical statements to describe the following expressions.

(a) $a \equiv b \pmod{n}$ (b) $\gcd(a, b) = 1$ (c) $a \mid b$

Rational root theorem: Suppose $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a polynomial with $a_i \in \mathbf{Z}$. If $r = \frac{p}{q}$ is a root of f with gcd(p,q) = 1, then $p \mid a_0$ and $q \mid a_n$.

- 2. (a) You may assume the following two facts:
 - Suppose that gcd(a, b) = 1. Then $gcd(a^m, b^n) = 1$, for any $m, n \in \mathbb{N}$.
 - Suppose that gcd(a, b) = 1 and $a \mid bc$. Then $a \mid c$.

Use these facts and the equation f(r) = 0 to write a complete proof of the rational root theorem.

- (b) Swap proofs with another group and answer the following questions for their proof.
 - Do the sentences and words make grammatical sense?
 - Is the proof easy to follow? Are there sudden jumps that leave you lost?
 - Have all the steps been correctly justified? Are any assumptions made with no justification or an implicit justification?
 - Is the proof correct? Are you convinced by the arguments?
 - Suggest changes and improvements to make the proof and its readability better.
- 3. Read the following proof and answer the same questions as above.

Theorem: Everyone has the same hair color.

Proof: This will be done by induction. For the base case, consider the set of a single person $\{P_1\}$. Clearly everyone in the set has the same hair color. Now suppose that everyone in any set $\{P_1, \ldots, P_n\}$ has the same hair color, for $n \ge 1$. For any other person P_{n+1} , the set $\{P_2, \ldots, P_{n+1}\}$ also has size n, so by the inductive hypothesis P_{n+1} must have the same hair color as every one of $\{P_2, \ldots, P_n\}$. Since P_1 has the same hair color as everyone in $\{P_2, \ldots, P_n\}$, everyone in $\{P_1, \ldots, P_{n+1}\}$ has the same hair color. Hence the inductive step holds, and everyone in the set of all people $\{P_1, \ldots, P_{7,600,000,000}\}$ has the same hair color. \Box

4. Read the following proof and answer the same questions as above.

Theorem: The improper integral $\int_1^\infty \frac{1}{x^p} dx$ converges only for p > 1.

Proof: If p < 1, then $\int_{1}^{b} \frac{1}{x^{p}} dx = \frac{b^{1-p}}{1-p} - \frac{1^{1-p}}{1-p} = \frac{b^{1-p}-1}{1-p}$ This fraction will keep increasing as $b \to \infty$. The denominator will become negligibly small, as will the term -1. Then, since p < 1, b^{1-p} will keep increasing to infinity. Hence for p < 1 the integral will not converge.

If
$$p = 1$$
, then $\int_{1}^{b} \frac{1}{x} dx = \ln(b) - \ln(1) = \ln(b)$

As we know, the function $\ln(x)$ has no asymptote, so as $b \to \infty$, the integral for p = 1 will not converge.

If p > 1, then $\int_{1}^{b} \frac{1}{x^{p}} dx = \frac{-1}{(p-1)b^{p-1}} - \frac{-1}{(p-1)1^{p-1}} = \frac{b^{p-1}-1}{(p-1)b^{p-1}}$. Now as $b \to \infty$, we will have that $b^{p-1} = b^{p-1} - 1$, so then we have

$$\lim_{b \to \infty} \int_1^b \frac{1}{x^p} \, dx = \frac{1}{p-1}$$

Hence the integral will converge only for p > 1. \Box

5. Read the following proof and answer the same questions as above.

Theorem: Let y = mx be a line through the origin that makes an angle θ with the *x*-axis. Let $M: \mathbf{R}^2 \to \mathbf{R}^2$ be the function that reflects every point in \mathbf{R}^2 to its mirror image across the line. Then the matrix form of M is $\begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.

Proof: Observing that reflecting in the line y = x is equivalent to when $\theta = \frac{\pi}{4}$, the x- and y-values get reversed, so in this situation we have the matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Similarly, when reflected in the y-axis, we have $\theta = \frac{\pi}{2}$, and the only change is the negation of the x-value. In this case we have the matrix $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$. Noting the change in each entry of the matrix, and observing that the difference is $\frac{\pi}{4}$ between the two, 4 functions can be easily constructed to mimic the observed nature. Hence we have: $M = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$. \Box