Worksheet 11

Week of 5 November 2018

Greatest common divisor (GCD) of $a, b \in \mathbb{Z}$: the largest $d \in \mathbb{Z}$ such that $d \mid a$ and $d \mid b$. **Least common multiple** (LCM) of $a, b \in \mathbb{Z}$: the smallest $m \in \mathbb{Z}$ such that $a \mid m$ and $b \mid m$.

Recall the **Euclidean algorithm**, which finds the GCD of $a, b \in \mathbf{Z}$.

put in a, b , find $q_0, r_0 \in \mathbf{Z}$	$a = q_0 b + r_0$	$0 \leqslant r_0 < b $
move b, r_0 , find $q_1, r_1 \in \mathbf{Z}$	$b = q_1 r_0 + r_1$	$0 \leqslant r_1 < r_0 $
move r_0, r_1 , find $q_2, r_2 \in \mathbf{Z}$	$r_0 = q_2 r_1 + r_2$	$0 \leqslant r_2 < r_1 $
move r_1, r_2 , find $q_3, r_3 \in \mathbf{Z}$	$r_1 = q_3 r_2 + r_3$	$0 \leqslant r_3 < r_2 $
	:	
	$r_{n-2} = q_n r_{n-1} + r_n$	$0 \leqslant r_n < r_{n-1} $
	$r_{n-1} = q_{n+1}r_n + 0$	

Then r_n is the GCD of a and b. By substituting back all the r_i for i < n, we can find a **linear** combination $ax + by = r_n$ relating a, b, and their GCD. Moreover:

There exist integers x, y such that $ax + by = 1 \iff gcd(a, b) = 1$.

- 1. Do not use a calculator for the following questions.
 - (a) Compute the GCD of 403 and 187 by the Euclidean algorithm.
 - (b) Compute the GCD of 2233 and -455 by the Euclidean algorithm.
 - (c) Write each of the answers from parts (a) and (b) as linear combinations of the respective pairs of numbers.
- 2. Find all integer solutions to the equation 40x + 25y = 600. Hint: Use the Euclidean algorithm on the coefficients to find one solution, then generalize.
- 3. What combinations of 18-cent and 33-cent stamps can be used to mail a package which requires a postage of 6 dollars?
- 4. Recall that $|a \cdot b| = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$. Find all the pairs of positive integers $a \leq b$ such that $\gcd(a, b) = 60$ and $\operatorname{lcm}(a, b) = 4200$.
- 5. For all $a, b, c \in \mathbb{Z}$ with c > 0, prove that gcd(ac, bc) = c gcd(a, b).
- 6. For all positive $a, b \in \mathbf{Z}$, prove that $a \mid b$ if and only if $a^2 \mid b^2$.