Worksheet 10

Week of 29 October 2018

- 1. Draw all connected graphs with 4 vertices that are not isomorphic to each other.
- 2. Label the vertices of the graph below by a, b, c, d, e, f, g, h so that no two consecutive letters are connected by an edge.

3. Let G be a connected planar graph. Every planar graph decomposes the plane into a number of pieces, called **faces**. Prove that

(number of vertices of G) – (number of edges of G) + (number of faces of G) = 2.

Hint: Use induction on the number of faces.

- 4. Recall that a set A is **countable** if it is finite or if there exists a bijection $A \to \mathbf{N}$.
 - (a) Let A and B be countable. Prove that $A \cup B$ is countable.
 - (b) Let A_1, A_2, A_3, \ldots be countable sets. Prove that $\bigcup_{i=1}^{\infty} A_i$ is countable.
- 5. Recall a **polynomial** is a function $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, where $n \in \mathbb{Z}_{\geq 0}$ is the **degree** of p and the $a_i \in \mathbb{R}$ are the **coefficients** of p.
 - (a) Prove that the set of all polynomials with integer coefficients is countable.
 - (b) A real number $\alpha \in \mathbf{R}$ is algebraic is there exists a polynomial p(x) with integer coefficients such that $p(\alpha) = 0$. Prove the set of all algebraic numbers is countable.