Week of 22 October 2018 $\,$

A graph G is a pair of sets (V, E), such that every element of E is a pair $\{v_1, v_2\}$, for $v_1, v_2 \in V$. The elements of V are called **vertices** and the elements of E are called **edges**.

- Graphs G = (V, E) and H = (W, F) are **isomorphic** if there is a bijection $f: V \to W$ so that $\{v_1, v_2\} \in E$ if and only if $\{f(v_1), f(v_2)\} \in F$.
- A subgraph of a graph G = (V, E) is a graph H = (W, F) with $W \subseteq V$ and $F \subseteq E$. The subgraph H of G is spanning if W = V.
- A **path** is a sequence of edges $\{e_1, \ldots, e_n\}$ so that e_i and e_{i+1} share exactly one element in common.

A graph G = (V, E) is

connected if for every pair $v_1, v_2 \in V$ there is a path from v_1 to v_2 , *k*-regular if every vertex $v \in V$ occurs in exactly *k* elements of *E*, **planar** if it can be drawn with no edge crossings.

1. Which of the following graphs are planar? Which are not?

- 2. (a) For each graph below, find a connected spanning subgraph. Make it as small as possible.
 - (b) Which of the graphs below are isomorphic?
 - (c) Which of the graphs below contain others as subgraphs?

- 3. Give an example of a connected 5-regular graph with 6 vertices.
- 4. A **Hamilton cycle** of a graph is a 2-regular connected spanning subgraph. By considering all possible choices, show that the Petersen graph does not have a Hamilton cycle.
- 5. A matching of a graph G = (V, E) is a subset $M \subseteq E$ so that no vertex of V appears twice in M. A matching is **perfect** if all vertices of V appear in M.
 - (a) Which of the graphs on this page have perfect matchings? Which do not?
 - (b) Draw an example of a 3-regular graph that does not have a perfect matching.