Worksheet 8

Week of 15 October 2018

Recall the following terminology for a function:

- 1. Warm up: Define the following terms, in your own words.
 - (a) injective function
 - (b) surjective function
 - (c) image (or range) of a function
- 2. A set A is **infinite** if there exists a function $f : A \to A$ that is injective but not surjective.
 - (a) Prove the set of natural numbers **N** is infinite.
 - (b) Prove the set $\{2, 4, 6, 8\}$ is not infinite.
 - (c) Prove the closed interval [0, 1] is infinite.
 - (d) Prove the set **R** of real numbers is infinite.
- 3. Let $f: \mathbf{R} \to \mathbf{R}$ be a function that satisfies f(x+y) = f(x)f(y) for all $x, y \in \mathbf{R}$. Prove that f is not surjective.
- 4. Let f, g, h be polynomials defined as

$$f(x) = 1,$$
 $g(x) = 2x + 1,$ $h(x) = 3x^2 + 2x + 1.$

Let k be a polynomial of degree at most 2. Prove that there exist $r, s, t \in \mathbf{R}$ such that k(x) = rf(x) + sg(x) + th(x).

5. Consider the sequence $a_n = \{9, 99, 999, 9999, 99999, \dots\}$, and let $p \neq 2, 5$ be a prime number. Prove that p divides at least one term of the sequence. *Hint: Use Fermat's little theorem.*

Binomial theorem: The coefficient of $x^a y^b$ in $(x+y)^c$, for $0 \le b \le a \le c$, is $\binom{a}{b} = \frac{a!}{b!(a-b)!}$.

- 6. Prove that $\binom{a}{b-1} + \binom{a}{b} = \binom{a+1}{b}$.
- 7. Prove that $\binom{a}{b}$ is an integer for all $0 \leq b \leq a$.