- 1. A binary relation on a set A is a function $r: A \times A \to \{T, F\}$. Let $A = \{1, 2, 3\}$.
 - (a) How many binary relations are there on A?
 - (b) How many reflexive binary relations are there on A?
 - (c) How many symmetric binary relations are there on A?
 - (d) How many anti-symmetric binary relations are there on A?
 - (e) **Bonus:** How many equivalence relations are there on A?
 - (f) **Bonus:** How many transitive binary relations are there on A?
- 2. Let $n \in \mathbf{N}$. Prove that $a \equiv b \pmod{n}$ is an equivalence relation on $a, b \in \mathbf{Z}$.
- 3. (a) Prove that 123456789 is not equal to n! for any n ∈ N.
 (b) Prove that log₁₀(123456789) is not a rational number.
- 4. Find all pairs of integers (x, y) such that xy = 12 + 2x.
- 5. Find the remainder when 64^{122} is divided by 31. You may assume **Fermat's little theorem**, which states that for $n \in \mathbb{Z}$ and p prime, $n^p \equiv n \pmod{p}$. If n and p are coprime, then we also have $n^{p-1} \equiv 1 \pmod{p}$.
- 6. Prove that if $x \equiv y \pmod{m}$ and $x \equiv y \pmod{n}$, then $x \equiv y \pmod{mn}$, for gcd(m, n) = 1.