- 1. Let $f: A \to B$ and $g: B \to C$ be two functions of sets. Their **composition** is the function $g \circ f: A \to C$, defined by $(g \circ f)(a) := g(f(a))$.
 - (a) Suppose that f and g are injective. Prove that $g \circ f$ is injective.
 - (b) Suppose that f and g are surjective. Prove that $g \circ f$ is surjective.
 - (c) Give an example of A, B, C, f, g so that f is not surjective, but g and $f \circ g$ are surjective.
- 2. Let $\epsilon > 0$ be a real number. Prove that there exists $n \in \mathbb{N}$ such that $0 < \frac{1}{n} < \epsilon$.

3. Use induction to show that $\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \left(\frac{n+2}{2^n}\right)$ for all positive integers n.

- 4. Prove that every integer ≥ 12 can be written in the form 3x + 7y, where x and y are non-negative integers.
- 5. A sequence $\{a_n\}$ of real numbers is **convergent** if there exists $L \in \mathbf{R}$ such that

 $\epsilon > 0 \implies \exists N \in \mathbf{N} \text{ such that } |a_n - L| < \epsilon \ \forall \ n \ge N.$

For the given convergent sequences and values of ϵ , find L and N satisfying this statement.

(a) $a_n = \frac{\sin(n)}{n}$ and $\epsilon = 1/50$ (b) $a_n = \frac{n}{n+1}$ and $\epsilon = 0.0001$