Worksheet 5

Week of 24 September 2018

Recall that $\mathbf{Q} := \{ \frac{m}{n} : m \in \mathbf{Z}, n \in \mathbf{N} \}$ is the set of *rational numbers*. You may assume that:

- Z is closed under addition, subtraction, and multiplication.
- N is closed under addition and multiplication.
- 1. Let $a, b \in \mathbf{Q}$.
 - (a) Prove that $a + b \in \mathbf{Q}$ and $a b \in \mathbf{Q}$. That is, prove that \mathbf{Q} is closed under addition and closed under subtraction.
 - (b) Prove that $ab \in \mathbf{Q}$ and $\frac{a}{b} \in \mathbf{Q}$ with $b \neq 0$. That is, prove that \mathbf{Q} is closed under multiplication and closed under nonzero division.
- 2. Recall that $\sqrt{2}$ is not a rational number, so $\sqrt{2} \notin \mathbf{Q}$. Define $\mathbf{Q}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbf{Q}\}$. The set $\mathbf{Q}[\sqrt{2}]$ is called "the rationals adjoined by the square root of 2."

(a) Let $a, b, c, d \in \mathbf{Q}$. Prove that if $a + b\sqrt{2} = c + d\sqrt{2}$, then a = c and b = d.

(b) Let $x, y \in \mathbf{Q}[\sqrt{2}]$. Prove that x + y, x - y, and xy are elements of $\mathbf{Q}[\sqrt{2}]$.

(c) Let $x, y \in \mathbf{Q}[\sqrt{2}]$ with $y \neq 0$. Prove that $\frac{x}{y}$ is an element of $\mathbf{Q}[\sqrt{2}]$.

- 3. Define $\mathbf{Z}[\sqrt{2}] := \{a + b\sqrt{2} : a, b \in \mathbf{Z}\}$. For $x = a + b\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$, define
 - the *conjugate* of x to be $\tilde{x} := a b\sqrt{2}$,
 - the norm of x to be $N(x) := x\tilde{x}$, and
 - a unit of $\mathbf{Z}[\sqrt{2}]$ to be an element $x \in \mathbf{Z}[\sqrt{2}]$ for which $\frac{1}{x} \in \mathbf{Z}[\sqrt{2}]$.
 - (a) Prove that $\mathbf{Z}[\sqrt{2}] \subseteq \mathbf{Q}[\sqrt{2}]$.

(b) Let $x \in \mathbb{Z}[\sqrt{2}]$. Prove that N(x) is an element of \mathbb{Z} .

(c) Let $x, y \in \mathbb{Z}[\sqrt{2}]$. Prove that N(xy) = N(x)N(y).

(d) Let $x \in \mathbb{Z}[\sqrt{2}]$. Prove that x is a unit if and only if $N(x) = \pm 1$.

(e) Prove that $99 + 70\sqrt{2}$ is a unit.