Worksheet 4

Week of 17 September 2018

1. Show that all these sets have the same cardinality by defining invertible functions among them.

N
$$\mathbf{N} \cup \{0\}$$
 Z

- $\{x \in \mathbf{Z} : x \text{ is divisible by 4}\} \qquad \{x \in \mathbf{Z} : x \text{ is even}\} \qquad \{3x 10 : x \in \mathbf{N}\}\$
 - $\{\frac{1}{a}: a \in \mathbf{N}\} \qquad \qquad \{\frac{a}{b}: a \in \mathbf{N}, b \in \{3, 5\}\} \qquad \qquad \{(a, b): a, b \in \mathbf{N}\}$
- 2. Let P be the statement: "There exists an injective function $\mathbf{Z} \to \mathbf{Z}$ that outputs only prime numbers. Decide which of the following statements are implied by P and which imply P.
 - (a) There are infinitely many prime numbers.
 - (b) There exists an injective function $\mathbf{N} \to \mathbf{Z}$ that outputs only prime numbers.
 - (c) There exists a surjective function $\mathbf{Z} \to \mathbf{Z}$ that outputs only prime numbers.
 - (d) The sets \mathbf{Z} and $\{x \in \mathbf{Z} : x \text{ is prime}\}$ are equal in size.
- 3. Use algebra to prove the following statements.
 - (a) Statement: A right triangle with sides a, b and hypotenuse c (and opposing angles A, B, C) satisfies a² + b² = c².
 Assumption: You may assume the law of sines a (a)/(sin(A)) = b/(sin(B)) = c/(sin(C)) for triangles.
 - (b) **Statement:** For every function $f: \mathbf{R} \to \mathbf{R}$ there exists a real number c_f such that $g: \mathbf{R} \to \mathbf{R}$ defined by $g(x) = f(x) + c_f$ satisfies g(0) = 0.

Principle of Mathematical Induction. If $S \subset \mathbf{N}$ is a set for which

- $1 \in S$, and
- if $n \in S$, then $n + 1 \in S$,

then $S = \mathbf{N}$.

3. Use induction to prove the following statements.

(a)
$$10^n - 1$$
 is divisible by 3 for every $n \in \mathbf{N}$.
(b) $\sum_{i=1}^n 3i^3 = \frac{3n^2(1+n)^2}{4}$ for every $n \in \mathbf{N}$.