Worksheet 3

Week of 10 September 2018

- 1. Give descriptions for the following sets without the dots "...".
 - (a) $\{0, 1, 2, 3, ...\}$ (e) $\{\{1, 2\}, \{3, 4\}, \{5, 6\}, ...\}$ (b) $\{2, 4, 6, ...\}$ (f) $\{0, 1, -1, 2, -2, ...\}$ (c) $\{1, 3, 5, ...\}$ (g) $[0, 1] \cup [2, 3] \cup [4, 5] \cup \cdots$ (d) $\{-10, -5, 0, 5, 10, 15, ...\}$ (h) $[0, 1] \cap [0, 1/2] \cap [0, 1/3] \cap \cdots$

A function $f: A \to B$ of sets is **injective** if $a \neq a'$ in A implies $f(a) \neq f(a')$ in B. The function f is **surjective** if for every $b \in B$ there eists $a \in A$ such that f(a) = b.

2. For each of the functions below, decide if it is injective, surjective, both, or neither. Justify your answers.

(a)	$\begin{array}{ccc} \mathbf{Z} & \rightarrow \\ x & \mapsto \end{array}$		(e)	\rightarrow \mapsto	
(b)	$\begin{array}{ccc} \mathbf{N} & \rightarrow \\ x & \mapsto \end{array}$		(f)	\rightarrow \mapsto	
(c)	$\begin{array}{ccc} \mathbf{Z} & \rightarrow \\ x & \mapsto \end{array}$	$\mathbf{N} \cup \{0\} \\ x $	(g)	\rightarrow \mapsto	$\mathbf{Z}\\\lfloor 3x \rfloor$
(d)	$\begin{array}{ccc} \mathbf{Z} & \rightarrow \\ x & \mapsto \end{array}$	\mathbf{Z} x + 26	(h)	\rightarrow \mapsto	$\mathbf{R}\\\sin(x)$

- 3. Give three different bijective functions from N to Z.
- 4. Give a surjective function from N to $\mathbf{Q} \cap (0, 1]$.

Principle of Mathematical Induction. If $S \subset \mathbf{N}$ is a set for which

- $1 \in S$, and
- if $n \in S$, then $n + 1 \in S$,

then $S = \mathbf{N}$.

- 5. Use induction to prove the following statements.
 - (a) $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ for every $n \in \mathbf{N}$.

(b) $2^n + 3^n$ is divisible by 5 for each odd $n \in \mathbf{N}$.

(c) Let $a_1 = 1$ and $a_{n+1} = \sqrt{3 + 2a_n}$ for all n > 1. Then $0 \leq a_n \leq a_{n+1} \leq 3$ for all $n \in \mathbb{N}$.

(d) $\frac{d}{dx}x^n = nx^{n-1}$ for every $n \in \mathbf{N}$.

(Hint: use the limit definition for n = 1, then the product rule.)