ESP Math 294

Worksheet 2

Week of 3 September 2018

This worksheet uses the following definitions:

- A symbol is any letter, number, shape you can think of.
- A set $A = \{a_1, a_2, \dots\}$ is a collection of symbols, called **elements** of the set.
- A function $f: A^n \to B$ takes as input $n \ge 1$ symbols a_1, \ldots, a_n in the set A and outputs 1 symbol $f(a_1, \ldots, a_n)$ in the set B.
- The **arity** of a function is the number of symbols it has as input.

We begin by studying 1-ary, 2-ary, and 3-ary functions from the 2-element set $\{T, F\}$ to itself.

1. Make a table of values for the following binary functions. Then rewrite them using less logical connectives.

(a) $(\neg P \implies P) \implies \neg P$	(d) $\neg P \implies \neg Q$
(b) $(\neg P \iff P) \iff \neg P$	(e) $\neg (P \implies \neg Q)$
(c) $(P \implies Q) \land (Q \implies P)$	(f) $\neg Q \land \neg P$

2. Complete the following truth tables.

Р	Q	$(P \implies Q) \iff (\neg Q \implies \neg P)$	$(P \lor Q) \lor (\neg P \lor Q)$	$(P \land \neg P) \lor (Q \land \neg Q)$
T	Т			
T	F			
F	Т			
F	F			

Р	Q	R	$P \wedge Q \wedge R$	$(P \lor Q) \land R$	$P \lor (Q \land R)$	$P \implies (Q \lor R)$	$(P \land Q) \iff (Q \lor R)$
T	T	T					
T	T	F					
T	F	T					
T	F	F					
F	T	T					
\overline{F}	T	F					
F	F	T					
F	F	F					

Recall the basic number systems N, Z, Q, R. The following questions deal with the binary functions addition, subtraction, multiplication, and division, written $+, -, \times, \div$, respectively, on these sets.

3. Which descriptions of these functions are correct? Why or why not?

$$+: \mathbf{N}^2 \to \mathbf{N}$$
 $+: \mathbf{R}^2 \to \mathbf{R}$ $+: \mathbf{Z}^2 \to \mathbf{R}$ $+: \mathbf{Q}^2 \to \mathbf{N}$

$$-: \mathbf{N}^2 \to \mathbf{N} \qquad -: \mathbf{Z}^2 \to \mathbf{Z} \qquad -: \mathbf{N}^2 \to \mathbf{R} \qquad -: \mathbf{R}^2 \to \mathbf{R}$$

 $\times : \mathbf{N}^2 \to \mathbf{N} \qquad \qquad \times : \mathbf{Q}^2 \to \mathbf{N} \qquad \qquad \div : \mathbf{N}^2 \to \mathbf{R} \qquad \qquad \div : \mathbf{R}^2 \to \mathbf{R}$

- 4. (a) A binary function $f: A^2 \to B$ is **commutative** if $f(a_1, a_2) = f(a_2, a_1)$ for every a_1, a_2 in A. Which of the given binary functions are commutative? Give counterexamples for those that are not commutative.
 - (b) A binary function $f: A^2 \to A$ is **associative** if $f(a_1, f(a_2, a_3)) = f(f(a_1, a_2), a_3)$ for every a_1, a_2, a_3 in A. Which of the given binary functions are associative? Give counterexamples for those that are not associative.
 - (c) An **identity element** for a commutative binary function $f: A^2 \to A$ is an element e of A such that $f(e, a_1) = f(a_1, e) = a_1$ for all a_1 in A. Which of the given commutative binary functions have an identity element? What is it?
 - (d) A commutative binary function $f: A^2 \to A$ distributes over another binary function $g: A^2 \to A$ if $f(a_1, g(a_2, a_3)) = g(f(a_1, a_2), f(a_1, a_3))$ for every a_1, a_2, a_3 in A. Which pairs of the given binary functions distribute one over the other?
- 5. Let $f: \mathbf{R} \to \mathbf{R}$ be the unary function $f(x) = x^2$ and $g: \mathbf{R}^2 \to \mathbf{R}$ the binary function $g(x, y) = (x + y)^2$.
 - (a) Is g commutative?
 - (b) Is the function $h: \mathbb{R}^2 \to \mathbb{R}$ given by h(x, y) = g(f(x), f(y)) commutative?
 - (c) Is the function $k \colon \mathbf{R}^2 \to \mathbf{R}$ given by k(x, y) = g(f(x) + x, f(y)) commutative?
 - (d) If we restrict the inputs of g to the set \mathbf{Q} , in which set do the outputs end up?
- 6. Give examples of:
 - (a) a commutative binary function $\mathbf{Q}^2 \to \mathbf{Q}$,
 - (b) a non-commutative binary function $\mathbf{R}^2 \to \mathbf{R}$,
 - (c) a non-commutative binary function $\mathbf{N}^2 \to \mathbf{N}$.