ESP Math 182 Mock final - Solutions Spring 2019

30 April 2019

1. Integral methods: Evaluate the following integrals. Show all your work.

(a)
$$
\int \frac{x^2 e^{\sqrt{x^3 - 3}}}{\sqrt{x^3 - 3}} dx
$$

For this we use integration by substitution, letting $u =$ √ $\sqrt{x^3 - 3}$, so $du = \frac{3x^2}{\sqrt{x^3 - 3}} dx$ by the chain rule. That is,

$$
\int \frac{x^2 e^{\sqrt{x^3 - 3}}}{\sqrt{x^3 - 3}} dx = \frac{1}{3} \int e^u du = \frac{1}{3} (e^u + c) = \frac{e^u}{3} + c
$$

for some constant c (note that the $1/3$ is absorbed into the constant).

(b)
$$
\int x^2 \sin(2x-5) \ dx
$$

This is integration by parts followed by substitution, with $u = 2x - 5$, so $du = 2dx$:

$$
\int x^2 \sin(2x - 5) \, dx = x^2 \int \sin(2x - 5) \, dx - \int 2x \int \sin(2x - 5) \, dx \, dx
$$

$$
= \frac{x^2}{2} \int \sin(u) \, du - \int x \int \sin(u) \, du \, dx
$$

$$
= \frac{x^2(-\cos(u))}{2} + \int x \cos(u) \, dx
$$

$$
= \frac{-x^2 \cos(2x - 5)}{2} + \int x \cos(2x - 5) \, dx,
$$

and the second term is another integration by parts with the same substitution, as

$$
\int x \cos(2x - 5) dx = x \int \cos(2x - 5) dx - \int \int \cos(2x - 5) dx dx
$$

= $\frac{x}{2} \int \cos(u) du - \frac{1}{2} \int \int \cos(u) du dx$
= $\frac{x \sin(u)}{2} - \frac{1}{2} \int \sin(u) dx$
= $\frac{x \sin(2x - 5)}{2} - \frac{1}{2} \int \sin(2x - 5) dx$
= $\frac{x \sin(2x - 5)}{2} - \frac{1}{4} \int \sin(u) du$
= $\frac{x \sin(2x - 5)}{2} + \frac{\cos(u)}{4}$
= $\frac{x \sin(2x - 5)}{2} + \frac{\cos(2x - 5)}{4}$

$$
= \frac{x}{2}\sin(2x-5) + \frac{1}{4}\cos(2x-5) + c.
$$

(c) $\int (\csc(3x) + \cot(3x))^2 dx$

Expand the square and use the identity $1 + \cot^2(x) = \csc^2(x)$:

$$
(\csc(3x) + \cot(3x))^2 = \csc^2(3x) + 2\csc(3x)\cot(3x) + \cot^2(3x)
$$

= $\csc^2(3x) + 2\csc(3x)\cot(3x) + \csc^2(3x) - 1$
= $2\csc^2(3x) + 2\csc(3x)\cot(3x) - 1$

Split the integral across the three terms, use the substitution $u = 3x$, and recall the derivatives of $\cot(x)$ and $\csc(x)$, namely $\frac{d}{dx}\cot(x) = -\csc^2(x)$ and $\frac{d}{dx}\csc(x) =$ $-\csc(x)\cot(x)$:

$$
\int (\csc(3x) + \cot(3x))^2 dx = \int (2\csc^2(3x) + 2\csc(x)\cot(3x) - 1) dx
$$

= $2 \int \csc^2(3x) dx + 2 \int \csc(3x)\cot(3x) dx - \int 1 dx$
= $\frac{2}{3} \int \csc^2(u) du + \frac{2}{3} \int \csc(u)\cot(u) du - x$
= $-\frac{2}{3} \cot(u) - \frac{2}{3} \csc(u) - x$
= $-\frac{2}{3} \cot(3x) - \frac{2}{3} \csc(3x) - x.$

(d)
$$
\int_5^7 \frac{x+1}{9x^2+4} \, dx
$$

This is a trigonometric integral, which we notice by the denominator not having any real roots. We want to make this look like $1/\sqrt{u^2 + a^2}$ for some u and u, and this is done by splitting it up into two terms and simplifying. Then we substitute $u = 9x^2 + 4$ (so $du = 18x dx$) in the first term, and $v = 3x$ (so $dv = 3dx$) in the second term to get

$$
\int \frac{x+1}{9x^2+4} dx = \int \frac{x}{9x^2+4} dx + \int \frac{1}{9x^2+4} dx
$$

$$
= \frac{1}{18} \int \frac{1}{u} du + \frac{1}{3} \int \frac{1}{v^2+2^2} dv
$$

$$
= \frac{\ln(|u|)}{18} + \frac{\arctan(v/2)/2}{3}
$$

$$
= \frac{\ln(9x^2+4)}{18} + \frac{\arctan(3x/2)}{6}.
$$

Evaluate this from $x = 5$ to $x = 7$ to get the answer.

(e) \int^3 e $x^2 + x - 20$ $\int \frac{x}{x^3 - 4x^2 + 4x} dx$

Here we have to use partial fractions. Factoring shows that

$$
x^{x} + x - 20 = (x + 5)(x - 4), \qquad x^{3} - 4x^{2} + 4x = x(x - 2)^{2}.
$$

Hence we have some constants A, B, C such that

$$
\frac{x^2 + x - 20}{x^3 - 4x^2 + 4x} = \frac{A}{x} + \frac{B}{x - 2} + \frac{C}{(x - 2)^2},
$$

or

$$
x^{2} + x - 20 = A(x - 2)^{2} + Bx(x - 2) + Cx.
$$

Evaluating this equation at the points 0 and 2 gives that $-20 = 4A$ and $-14 = 2C$. To get B, we compare coefficients of the x^2 terms on both sides, getting $1 = A + B$. Hence $A = -5$, $B = 6$ and $C = -7$. The integral can now be distributed to the terms as follows:

$$
\int_{e}^{3} \frac{-5}{x} dx = -5 \ln(|x|) \Big|_{x=e}^{x=3} = -5 \ln(3) - 5,
$$

$$
\int_{e}^{3} \frac{6}{x-2} dx = \int_{e-2}^{1} \frac{6}{u} du = 6 \ln(|u|) \Big|_{u=e-2}^{u=1} = -6 \ln(e-2),
$$

$$
\int_{e}^{3} \frac{-7}{(x-2)^{2}} \int_{e-2}^{1} \frac{-7}{u^{2}} du = \frac{7}{u} \Big|_{u=e-2}^{u=1} = 7 - \frac{7}{e-2}.
$$

(f) $\int^{2\pi}$ 1 $e^x \cos(x) dx$

> This is two applications of integration by parts, then rearranging. First let $u = e^x$ and $dv = \cos(x) dx$, so that $du = e^x dx$ and $v = \sin(x)$:

$$
\int e^x \cos(x) \, dx = e^x \sin(x) - \int e^x \sin(x) \, dx.
$$

Use integration by parts on the second term, letting $u = e^x$ again, and $dv = \sin(x) dx$, so that $du = e^x dx$ and $v = -\cos(x)$:

$$
\int e^x \sin(x) dx = -e^x \cos(x) - \int e^x (-\cos(x)) dx.
$$

The original integral $\int e^x \cos(x) dx$ has appeared, hinting that we may need to rearrange (group the terms together). This does indeed work out:

$$
\int e^x \cos(x) dx = e^x \sin(x) - \left(-e^x \cos(x) - \int e^x (-\cos(x)) dx\right)
$$

$$
\int e^x \cos(x) dx = e^x \sin(x) + e^x \cos(x) - \int e^x \cos(x) dx
$$

$$
2 \int e^x \cos(x) dx = e^x (\sin(x) + \cos(x))
$$

$$
\int e^x \cos(x) dx = \frac{e^x}{2} (\sin(x) + \cos(x)).
$$

This was a definite integral, so we need to evaluate it at the bounds:

$$
\int_{1}^{2\pi} e^x \cos(x) dx = \frac{e^x}{2} (\sin(x) + \cos(x)) \Big|_{x=1}^{x=2\pi}
$$

= $\left(\frac{e^{2\pi}}{2} (\sin(2\pi) + \cos(2\pi)) \right) - \left(\frac{e^1}{2} (\sin(1) + \cos(1)) \right)$
= $\frac{e^{2\pi}}{2} - \frac{e}{2} (\sin(1) + \cos(1)).$

2. Area between curves: Find the integral that represents the area above the curve $y =$ $(x-3)^2-12$ and below both of the curves $y=(x-2)^3+5$ and $y=7-x$. Do not evaluate the integral. Hint: The cubic and linear curves intersect at $x = 2$.

The graphs of these three functions on the interval $[-1, 8]$ with range $[-12, 6]$ is below.

The intersection point of the parabola with the cubic function is found to be at

$$
(x-3)^2 - 12 = (x-2)^3 + 5
$$

\n
$$
x^2 - 6x + 9 - 12 = x^3 - 6x^2 + 12x - 8 + 5
$$

\n
$$
x^3 - 7x^2 + 18x = 0
$$

\n
$$
x(x^2 - 7x + 18) = 0.
$$

Since $(-7)^2-4.18 = 49-72 = -23 < 0$, the discriminant of the quadratic factor is negative, so the only solution to the equation is $x = 0$, for which $y = -3$. With the hint, we find the intersection of the cubic with the line at $(2, 5)$. With the quadratic formula, we find the the intersection of the cubic with the line at $(2, 5)$. With the quadratic formula, we find the intersection of the quadratic with the line at $((5 + \sqrt{65})/2, (9 - \sqrt{65})/2)$. Hence the area of the shape is given by

$$
\int_0^2 ((x-2)^3+5) - ((x-3)^2-12) \, dx + \int_2^{(5+\sqrt{65})/2} (7-x) - ((x-3)^2-12) \, dx.
$$

- 3. Volumes of revolution: Calculate the following volumes using the disk method.
	- (a) The area bounded by $y = \ln(x)$, $y = 4 \ln(x)$, $x = 2$, and $x = 4$ revolved around the x-axis.

The four curves are given in the diagram below.

Hence the integral representing the volume is

$$
\pi \int_{2}^{4} (4 - \ln(x))^{2} - (\ln(x))^{2} dx = \pi \int_{2}^{4} 16 - 8 \ln(x) dx
$$

\n
$$
= \pi (16x - 8(x \ln(x) - x)) \Big|_{x=2}^{x=4}
$$

\n
$$
= \pi ((64 - 8(4 \ln(4) - 4)) - (32 - 8(2 \ln(2) - 2)))
$$

\n
$$
= \pi (64 - 32 \ln(4) + 32 - 32 + 16 \ln(2) - 16)
$$

\n
$$
= \pi (48 - 64 \ln(2) + 16 \ln(2))
$$

\n
$$
= 48\pi (1 - \ln(2)).
$$

(b) The area in the second quadrant bounded by $x = -y^2$ and $y = x^2$ revolved around the axis $y = -3$.

The two curves and the axis $y = -3$ are given the in the diagram below.

Expressing the curve $x = -y^2$ in terms of x we get $y = \pm$ √ $\overline{-x}$. We chose the positive Expressing the curve $x = -y$ in terms of x we get $y = \pm \sqrt{-x}$. We chose the positive side $+\sqrt{-x}$, because that is the one above the x-axis. Since we are rotating not around the x-axis, but around a line shifted three units below the x -axis, we have to add 3 to both functions to get the right shape. Hence the integral representing the volume is

$$
\pi \int_{-1}^{0} (\sqrt{-x} + 3)^2 - (x^2 + 3)^2 dx = \pi \int_{-1}^{0} -x + 3\sqrt{-x} + 9 - x^4 - 6x^2 - 9 dx
$$

\n
$$
= \pi \left(- \int_{-1}^{0} x dx + 3 \int_{-1}^{0} \sqrt{-x} dx - \int_{-1}^{0} x^4 dx - 6 \int_{-1}^{0} x^2 dx \right)
$$

\n
$$
= \pi \left(\frac{x^2}{2} + 2(-x)^{3/2} - \frac{x^5}{5} - 2x^3 \right) \Big|_{x=-1}^{x=0}
$$

\n
$$
= \pi \left(\frac{(-1)^2}{2} + 2(1)^{3/2} - \frac{(-1)^5}{5} - 2(-1)^3 \right)
$$

\n
$$
= \pi \left(\frac{1}{2} + 2 + \frac{1}{5} + 2 \right)
$$

\n
$$
= \frac{47\pi}{10}.
$$

(c) The volume of revolution of $y = x(x - 1)(x - 2)$ revolved around the x-axis between $x = 0$ and $x = 3$.

The curve is given in the diagram below.

Here we simply integrate from 1 to 3 with the height of the function as the radius of the disks. So the volume of the solid is

$$
\pi \int_0^3 \left(x(x-1)(x-2) \right)^2 dx = \frac{288\pi}{35}
$$

.

The calculations are skipped because the integrand is just a polynomial, with no tricks.

4. Sequences: For each of the following sequences, determine if it converges or diverges. If it converges find the limit.

$$
(a) x_n = \frac{n}{n+1}
$$

Observe that

$$
\lim_{n \to \infty} \left[\frac{n}{n+1} \right] = \lim_{n \to \infty} \left[\frac{\frac{1}{n}}{\frac{1}{n}} \cdot \frac{n}{n+1} \right] = \lim_{n \to \infty} \left[\frac{1}{1 + \frac{1}{n}} \right] = \frac{1}{1+0} = 1,
$$

so the sequence converges, and converges to 1.

(b)
$$
x_n = \frac{n \cos(n\pi)}{2n + 1}
$$

Observe that when *n* is an odd number, $\cos(n\pi) = \cos(\pi) = -1$, so then

$$
\lim_{n \to \infty} \left[\frac{n \cos(n\pi)}{2n+1} \right] = \lim_{n \to \infty} \left[\frac{-n}{2n+1} \right] = \lim_{n \to \infty} \left[\frac{-1}{2 + \frac{1}{n}} \right] = \frac{-1}{2 + 0} = -\frac{1}{2},
$$

but if *n* is odd, then $\cos(n\pi) = \cos(0) = 1$, so then

$$
\lim_{n \to \infty} \left[\frac{n \cos(n\pi)}{2n+1} \right] = \lim_{n \to \infty} \left[\frac{n}{2n+1} \right] = \lim_{n \to \infty} \left[\frac{1}{2 + \frac{1}{n}} \right] = \frac{1}{2+0} = \frac{1}{2},
$$

so the limits are not the same. That is, the sequence alternates between $1/2$ and $-1/2$ forever. Hence the sequence does not converge.

(c) $x_n =$ $\sin(n)$ n

> This is an application of the squeeze theorem. Recall that $-1 \leq \sin(x) \leq 1$ for any argument x , so then

$$
-1 \leqslant \sin(n) \leqslant 1
$$

\n
$$
-\frac{1}{n} \leqslant \frac{\sin(n)}{n} \leqslant \frac{1}{n}
$$

\n
$$
\lim_{n \to \infty} \left[-\frac{1}{n} \right] \leqslant \lim_{n \to \infty} \left[\frac{\sin(n)}{n} \right] \leqslant \lim_{n \to \infty} \left[\frac{1}{n} \right]
$$

\n
$$
-0 \leqslant \lim_{n \to \infty} \left[\frac{\sin(n)}{n} \right] \leqslant 0.
$$

Hence the sequence $\sin(n)/n$ converges to 0.

5. Series - convergence / divergence tests: Determine if the following series converge or diverge. Indicate which tests you have used.

(a)
$$
\sum_{n=1}^{\infty} \frac{2n+1}{\sqrt{n^2+1}}
$$

Observe that the limit of the individual terms as $n \to \infty$ does not equal 0, so by the divergence test, the series must diverge:

$$
\lim_{n \to \infty} \left[\frac{2n+1}{\sqrt{n^2+1}} \right] \; = \; \lim_{n \to \infty} \left[\frac{2 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n^2}}} \right] \; = \; 2 \; \neq \; 0.
$$

(b) $\sum_{n=1}^{\infty}$ $n=0$ $\left(n\right)$ 12 $-\frac{n+1}{c}$ 6 \setminus

> This looks like a telescoping series, but the limit of the individual terms has no lower bound, and so again by the series divergence test, this series diverges:

$$
\lim_{n \to \infty} \left[\frac{n}{12} - \frac{n+1}{6} \right] = \lim_{n \to \infty} \left[\frac{n-2n-2}{12} \right] = \frac{1}{12} \lim_{n \to \infty} \left[-n - 2 \right] \to -\infty \neq 0.
$$

6. Series - sum of series: Find the value of the following convergent series. Indicate what type of series they are.

(a)
$$
\sum_{n=0}^{\infty} 2^{2n} 4^{3n+1} e^{8-8n}
$$

Algebraic simplification of the summand shows this is a geometric series:

$$
2^{2n}4^{3n+1}e^{8-8n} = \frac{(2^2)^n (4^3)^n 4^1 e^8}{(e^8)^n} = \left(\frac{2^2 \cdot 4^3}{e^8}\right)^n 4e^8 = \left(\frac{2^8}{e^8}\right)^n 4e^8.
$$

Since $e > 2$, the ratio $r = \frac{2^8}{e^8}$ $\frac{2^8}{e^8}$ < 1, so the series does indeed converge. Here $a = 4e^8$ is the first term, so by the formula, the sum of the series is

$$
\frac{a}{1-r} = \frac{4e^8}{1 - \frac{2^8}{e^8}} = \frac{4e^{16}}{e^8 - 2^8}.
$$

(b)
$$
\sum_{n=0}^{\infty} \frac{4}{n^2 + 4n + 3}
$$

Since $n^2 + 4n + 3 = (n+1)(n+3)$, we can use partial fractions to split up the summand into two terms:

$$
\frac{4}{n^2 + 4n + 3} = \frac{A}{n+1} + \frac{B}{n+3}
$$

4 = A(n+3) + B(n + 1).

At $n = -1$, we get that $A = 2$, and at $n = -3$ we get $B = -2$. Hence the series is

$$
2\sum_{n=0}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+3}\right),
$$

which is telescoping with partial sums

$$
S_2 = \left(\frac{1}{1} - \frac{y}{\beta}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \left(\frac{y}{\beta} - \frac{1}{5}\right)
$$

\n
$$
S_3 = \left(\frac{1}{1} - \frac{y}{\beta}\right) + \left(\frac{1}{2} - \frac{y}{\beta}\right) + \left(\frac{y}{\beta} - \frac{1}{5}\right) + \left(\frac{y}{\beta} - \frac{1}{6}\right)
$$

\n
$$
S_4 = \left(\frac{1}{1} - \frac{y}{\beta}\right) + \left(\frac{1}{2} - \frac{y}{\beta}\right) + \left(\frac{y}{\beta} - \frac{y}{\beta}\right) + \left(\frac{y}{\beta} - \frac{1}{6}\right) + \left(\frac{y}{\beta} - \frac{1}{7}\right)
$$

\n
$$
\vdots
$$

\n
$$
S_n = 1 + \frac{1}{2} - \frac{1}{n+2} - \frac{1}{n+3}.
$$

The limit of these partial sums is $\frac{3}{2}$, and as the original series had a multiple of 2 facored out, the series converges to 3.

7. Series - intervals of convergence: Find the intervals of convergence of the following series. Indicate which tests you have used.

(a)
$$
\sum_{n=2}^{\infty} \frac{(x-2)^n}{(n \ln(n))^2}
$$

Note that

$$
\frac{a_{n+1}}{a_n} = \frac{\frac{(x-2)^{n+1}}{((n+1)\ln(n+1))^2}}{\frac{(x-2)^n}{(n+1)\ln(n+1)^2}} = \frac{(x-2)(n \ln(n))^2}{((n+1)\ln(n))^2}.
$$

 $\overline{(n \ln(n))^2}$

We only take the factors inside the square as $n \to \infty$, and apply l'Hopital's rule to get that

$$
\lim_{n \to \infty} \left[\frac{n \ln(n)}{(n+1)\ln(n)} \right] = \lim_{n \to \infty} \left[\frac{\ln(n) + \frac{n}{n}}{\ln(n) + \frac{n}{n} + \frac{1}{n}} \right] = \lim_{n \to \infty} \left[\frac{1 + \frac{1}{\ln(n)}}{1 + \frac{1}{\ln(n)} + \frac{1}{n\ln(n)}} \right] = 1.
$$

The square of the limit also goes to 1, so the series certainly converges for $|x - 2| < 1$, or $1 < x < 3$. At the endpoints, we have that

$$
\frac{(3-2)^n}{(n\ln(n))^2} = \frac{1}{(n\ln(n))^2} \leqslant \frac{1}{n^2},
$$

which converges by the p -series test. The other endpoint converges by the alternating series test, so the interval of convergence for this series is $x \in [1,3]$.

(b)
$$
\sum_{n=1}^{\infty} \frac{(x-3)^n}{15^n n}
$$

Note that

$$
\frac{a_{n+1}}{a_n} = \frac{\frac{(x-3)^{n+1}}{15^{n+1}(n+1)}}{\frac{(x-3)^n}{15^n n}} = \frac{(x-3)n}{15(n+1)},
$$

and taking the limit of this as $n \to \infty$, we get

$$
\lim_{n \to \infty} \left[\frac{(x-3)n}{15(n+1)} \right] = \frac{x-3}{15} \lim_{n \to \infty} \left[\frac{n}{n+1} \right] = \frac{x-3}{15} \lim_{n \to \infty} \left[\frac{1}{1 + \frac{1}{n}} \right] = \frac{x-3}{15},
$$

so by the ratio test, we have that the series definitely converges for $\left|\frac{x-3}{15}\right| < 1$, or $-12 < x < 18$. For the endpoints, we have that

$$
\frac{(18-3)^n}{15^n n} = \frac{1}{n}, \qquad \qquad \frac{(-12-3)^n}{15^n n} = \frac{(-1)^n}{n},
$$

both of which are divergent series. Hence the interval of convergence is $x \in (-12, 18)$ for this series.

8. Power series:

(a) Find the first four terms of the Maclaurin series of $f(x) = \int_0^x 3t^3 - \frac{5}{2}$ $\frac{5}{2}t^2 + 2 dt$. The first term is $f(0)$, which, being the integral from 0 to 0, is $f(0) = 0$. The second term is the derivative of f at 0 , so by the fundamental theorem of calculus, we have

$$
f'(0) = 3(0)^3 - \frac{5}{2}(0)^2 + 2 = 2.
$$

The derivative is $f'(x) = 3x^3 - \frac{5}{2}$ $\frac{5}{2}x^2 + 2$. The third term needs the second derivative, which is $f''(x) = 9x^2 - 5x$. Hence the thrid term is

$$
\frac{f''(0)}{2} = \frac{9(0)^2 - 5(0)}{2} = 0.
$$

The fourth term needs the third derivative, which is $f'''(x) = 18x-5$. Hence the fourth term is

$$
\frac{f'''(0)}{6} = \frac{18(0) - 5}{6} = -\frac{5}{6}.
$$

Hence the first four terms of the Maclaurin series are $0+2+0-\frac{5}{6}$ $\frac{5}{6}$.

- (b) What are the Maclaurin series of the following common functions?
	- i. e^x

Either by direct computation or by recognizing the series, this is $\sum_{n=1}^{\infty}$ x^n $n!$

ii. $\frac{1}{1+x}$

Either by direct computation or by recognizing the series, this is $\sum_{n=1}^{\infty}$ $(-1)^n x^n$.

 $n=0$

 $n=0$

.

iii. $cos(x)$

Either by direct computation or by recognizing the series, this is $\sum_{n=1}^{\infty}$ $n=0$ $(-1)^n x^{2n}$ $\frac{1}{(2n)!}$.

(c) Find the first three terms of the Taylor series of $f(x) = 2e^{2x} \sin(2x)$ at $x = a$. For a function f , recall the first three terms of the Taylor series of f at a are

$$
f(a) + f'(a)(x - a) + f''(a) \frac{(x - a)^2}{2}.
$$

We get the first term easily to be $f(a) = 2e^{2a} \sin(2a)$. To get the second term, we differentiate, and use the product rule:

$$
f'(x) = 4e^{2x}\sin(2x) + 4e^{2x}\cos(2x).
$$

Hence the second term of the Taylor series is $4e^{2a}(\sin(2a) + \cos(2a))(x-a)$. To get the third and final term, we need to differentiate again:

$$
f''(x) = 8e^{2x} \sin(2x) + 8e^{2x} \cos(2x) + 8e^{2x} \cos(2x) - 8e^{2x} \sin(2x)
$$

= 16e^{2x} cos(2x).

It is immediate that the third term is $16e^{2a}\cos(2a)\frac{(x-a)^2}{2}$ $rac{-a)^2}{2}$.

9. Parametric equations:

(a) Describe the linear system

$$
4x + 5y - 2z = 7,
$$

$$
x - y + 10z = 1
$$

as a parametric equation in the variable t.

We choose z to be our free variable (but any other would work). Solve the second equation for x (as that is easier) and replace it in the first to get

$$
4(1 + y - 10z) + 5y - 2z = 7 \implies y = \frac{42z + 3}{9}.
$$

Set $t = z$ and replace this in the second equation to get

$$
x = 1 + \frac{42t + 3}{9} + 10t = \frac{132t + 12}{9}.
$$

Hence the parametric equation describing this linear system is

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 132/9 \\ 42/9 \\ 1 \end{pmatrix} t + \begin{pmatrix} 4/3 \\ 1/3 \\ 0 \end{pmatrix}.
$$

(b) For the parametric curve $(x, y) = (5t - 2, 8 - 3t)$, find $\frac{dy}{dx}$ and the values of t for which the graph is in the first quadrant.

Recall that

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{-3}{5}.
$$

For the first quadrant, we must have both the x-values and y-values be positive, so

$$
5 - 2t \ge 0
$$

\n
$$
5t \ge 2
$$

\n
$$
t \ge 2/5,
$$

\n
$$
8 - 3t \ge 0
$$

\n
$$
8 \ge 3t
$$

\n
$$
8/3 \ge t.
$$

In other words, we must have $2/5 \le t \le 8/3$ for the graph to be in the first quadrant.

10. *Matrices:* Find the determinant, eigenvalues, and eigenvectors of the matrix $\begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$.

The determinant is $1 \cdot 2 - 1 \cdot (-1) = 3$. Recall the eigenvalues of a matrix A are the roots of the polynomial det($A - \lambda x$) = 0. That is,

$$
0 = \det \begin{bmatrix} 1 - \lambda & 1 \\ -1 & 2 - \lambda \end{bmatrix} = (1 - \lambda)(2 - \lambda) + 1 = \lambda^2 - 3\lambda + 3,
$$

$$
\lambda = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{3 \pm \sqrt{-3}}{2}.
$$

Both of these eigenvalue are imaginary, that is, they don't exist, as we cannot take the square root of a negative number. Hence there are no eigenvalues and so there are no eigenvectors.