Spring 2019

Worksheet 14

5 March 2019

- 1. Warm up: Answer the following True / False questions.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{2^n}$ is a geometric series.
 - (b) $\int_{1}^{100} \frac{1}{x-1}$ is an improper integral.
 - (c) The sequence $1, -1, 1, -1, 1, -1, \ldots$ diverges.
- 2. This question is about the *integral test* for series, which you may not have seen in class. The test states that for a non-increasing function f,

$$\sum_{n=N}^{\infty} f(n) \text{ converges} \quad \iff \quad \int_{N}^{\infty} f(x) \, dx \text{ is finite.}$$

Use the integral test for the questions below.

- (a) Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
- (b) Show that $\sum_{n=1000}^{\infty} \frac{1}{n}$ diverges.
- (c) Show that $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges for p > 1.
- (d) Calculate $\sum_{n=1}^{100} \frac{1}{e^n}$ and $\int_1^{100} \frac{1}{e^x} dx$.

3. Using any conergence / divergence test you have learned to determine if the following series converge or diverge. Say which test(s) you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$

(g)
$$\sum_{n=1}^{\infty} \frac{1}{2+3^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n+1}{n^3}$$

(h)
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 4}$$

(i)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{3^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1}$$

(j)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)^3}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$$

(k)
$$\sum_{n=1}^{\infty} \sin(1/n^2)$$

(f)
$$\sum_{n=1}^{\infty} \frac{1}{2 + \sqrt{3n}}$$

(l)
$$\sum_{n=1}^{\infty} \frac{n!}{4^n n^3}$$