Spring 2019

${f Worksheet} \,\, {f 13}$

28 February 2019

- 1. Warm up: Answer the following true / false questions.
 - (a) The sequence $\{a_n\}_{n=1}^{\infty}$ for $a_n = \frac{1}{n}$ converges.
 - (b) The series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.
 - (c) If a series $\sum_{n=0}^{\infty} a_n$ converges and $a_n \to c$ as $n \to \infty$, then c = 0.
 - (d) If a sequence $\{a_n\}_{n=1}^{\infty}$ converges to 0, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. Determine if the following infinite series converge. If so, find the sum.
 - (a) $\frac{1}{10} + \frac{3}{20} + \frac{9}{40} + \frac{27}{80} + \frac{81}{160} + \cdots$
 - (b) $\sum_{n=0}^{\infty} \left(\frac{1}{3}\right)^n 2^{2-3n}$
 - (c) $\sum_{n=0}^{\infty} (-1)^n e^{3-n} 2^{n+1} \left(\frac{2}{3}\right)^{2n}$
 - (d) $\sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{3}\right)^{2n} + \frac{3 \cdot 8^n}{81^{n/2}}$
 - (e) $\frac{3}{4} + \frac{1}{4} + \frac{1}{12} + \frac{1}{36} + \frac{1}{108} + \cdots$
- 3. Notice that $0.9 = \frac{9}{10}$, $0.99 = \frac{9}{10} + \frac{9}{100}$ and so on.
 - (a) Use this pattern to define a sequence $\{a_n\}$ such that $\sum_{n=0}^{\infty} a_n = 0.99999...$
 - (b) Use this pattern to define a sequence $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n = 0.1234123412...$
- 4. Use geometric series to show that:
 - (a) 0.99999.... = 1
- (b) 0.5555555... = 5/9 (c) 1.36363636... = 15/11

- 5. Recall that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
 - (a) Reindex this series so that the index starts at n=0. That is, keep the series the same, but change the $\frac{1}{n}$ to something else.
 - (b) Use part (a) to show that $\sum_{n=1}^{\infty} \frac{1}{n+1}$ diverges.
 - (c) Use these ideas to show that, for any positive integer k, the series $\sum_{n=1}^{\infty} \frac{1}{n+k}$ diverges.

6. Determine if the following statements are true or false. If true, provide some justification. If false, provide a counterexample.

(a)
$$\sum_{n=0}^{k} (a_n + b_n) = \sum_{n=0}^{k} a_n + \sum_{n=0}^{k} b_n$$
 for $k < \infty$

(b)
$$\sum_{n=0}^{\infty} (a_n + b_n) = \sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$$

(c)
$$\sum_{n=0}^{\infty} a_n b_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right)$$