Worksheet 11

21 February 2019

1. This exercise is an introduction to the *Fourier transform* of a function. For a function f that satisfies f(0) = f(1), define its Fourier transform as the function

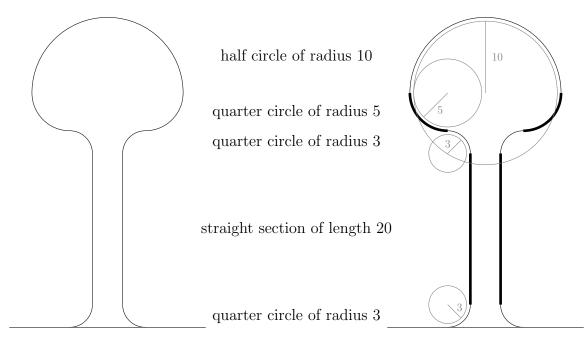
$$\hat{f}(t) = \int_0^1 f(x) e^{-2\pi i t x} dx,$$

where $i = \sqrt{-1}$ is the *imaginary number*.

(a) Show that $\hat{f'}(x) = 2\pi i t \hat{f}(x)$. Hint: use integration by parts and that f(0) = f(1).

(b) Let g be some function, and let f be described by the *differential equation*

$$\frac{f''(x)}{4\pi^2} + 4f(x) = g(x).$$


Apply the Fourier transform (take the integral of both sides) to solve for \hat{f} .

(c) Let f be a function defined on [0, 1] as

$$f(x) = \begin{cases} x & 0 \le x \le 1/2, \\ -x+1 & 1/2 \le x \le 1. \end{cases}$$

Calculate the Fourier transform \hat{f} and find $\hat{f}(1)$.

2. Consider a cutaway of a symmetric water tower below, with units in feet.

Given the geometric shapes of the walls, write down (do not evaluate!) the integrals and expressions that give the total volume of water that could be contained within the 3-dimensional structure.