Worksheet 8

Spring 2019

12 February 2019

1. Warm up: List as many trigonometric identities as you can remember (without looking at your notes or the internet!)

2. Solve the following trigonometric integrals.

(a)
$$\int \sec(x)\tan(x) dx$$
 (g) $\int (\sin(x) + \cos(x))^2 dx$

(b)
$$\int \csc(x) \, dx$$
 (h) $\int (2 + \tan(x))^2 \, dx$

(c)
$$\int \csc^2(x) dx$$
 (i) $\int \frac{\cos^2(x)}{1+\sin(x)} dx$

(d)
$$\int \cos^3(x) \, dx$$
 (j) $\int \sec^2(x) \sqrt{\tan(x) - 2} \, dx$

(e)
$$\int \tan(x) dx$$
 (k) $\int e^x \tan(e^x) dx$

(f)
$$\int \tan^5(x) dx$$
 (l) $\int \frac{\cos(2x)}{\cos(x) + \sin(x)} dx$

- 3. (a) What is a polynomial?
 - (b) Show by differentiation that if $P_n(x)$ is a polynomial of degree n which satisfies the equation $P_n(x) + P'_n(x) = x^n$, then $\int x^n e^x dx = P_n(x)e^x + C$.

4. Let
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt$$
 for $x > 0$.

(a) Use integration by parts to show that $\Gamma(x+1) = x\Gamma(x)$ for x > 0.

(b) Show that $\Gamma(1) = 1$.

(c) Show that $\Gamma(n) = (n-1)!$ for all $n \in \mathbf{N}$ (the set of natural numbers).