Worksheet 3

22 January 2019

- 1. Take the derivative with respect to x, and the definite integral from 0 to t with respect to x, of the following functions.
 - (a) x (d) e^x
 - (b) e (e) e^e
 - (c) x^e (f) ee^{ex}
- 2. Let $f(x) = 4 x^2$ and g(x) = x 2.
 - (a) What is the definition of a graph?
 - (b) Where do the graphs of f and g meet? Do they bound a finite area?
 - (c) Find the area of the region bounded by the curves f and g.
- 3. Let $f(x) = \arcsin(3x+1)$.
 - (a) What is the domain of f? On what sub-interval of this domain is f differentiable?
 - (b) Write down the equation of the tangent line to f at the point $x = -\frac{1}{6}$, if it exists.

4. Let $n \ge 1$ be an integer.

- (a) Draw the graph of $y = x^n$ on $x \in [0, 1]$ for n = 1, 2, 3.
- (b) Find the integral of $y = x^n$ on $x \in [0, 1]$ for any $n \ge 1$.
- (c) What happens to your answer above when $n \to \infty$? Does this make sense?

5. What is the area bounded between the curves $3 + \sin(x)$ and $3 - \sin(x)$ from x = 0 to $x = k\pi$, for any integer k?

6. Find a constant c such that $\lim_{t\to 3} \left[\frac{4t^2 + ct + 7c - 6}{2t^2 - 5t - 3} \right]$ exists.

7. Prove that $e^{\pi} > \pi^{e}$. Hint: take the natural logarithm of both sides and view the statement as two functions compared at a certain value.