Worksheet 26

19 April 2018

Recall that $\mathbf{R}^n = \{(v_1, \ldots, v_n) : v_i \in \mathbf{R}\}$ is a vector space, with basis elements

$$e_1 = (1, 0, 0, \dots, 0),$$

$$e_2 = (0, 1, 0, \dots, 0),$$

$$\vdots$$

$$e_{n-1} = (0, \dots, 0, 1, 0),$$

$$e_n = (0, \dots, 0, 0, 1).$$

A linear equation in \mathbb{R}^n is a linear polynomial $a_0 + a_1x_1 + \cdots + a_nx_n = 0$, where $a_i \in \mathbb{R}$ and the x_i are indeterminates, or variables. A linear combination of elements $c_1e_1 + \cdots + c_ne_n$, for $c_i \in \mathbb{R}$, is a solution to this equation if $a_0 + a_1c_1 + \cdots + a_nc_n = 0$. A system of linear equations is a collection

$$a_{1,0} + a_{1,1}x_1 + \dots + a_{1,n}x_n = 0,$$

$$a_{2,0} + a_{2,1}x_1 + \dots + a_{2,n}x_n = 0,$$

$$\vdots$$

$$a_{k,0} + a_{k,1}x_1 + \dots + a_{k,n}x_n = 0$$

of linear equations. A linear combination of elements $c_1e_1 + \cdots + c_ne_n$ is a *solution* to this system if $a_{i,0} + a_{i,1}c_1 + \cdots + a_{i,n}c_n = 0$ for all $i = 1, \ldots, k$. The *solution space* is the collection of elements of \mathbf{R}^n that satisfy all the equations in a system, itself a vector space.

- 1. Warm up 1: Find at least one solution to each of the following systems of equations, in the appropriate vector spaces. If no solutions exist, say so.
 - (a) $5 + 4x_1 = 0$ in \mathbf{R}^1 (c) $2x_1 = 0$ in \mathbf{R}^1 (e) $1 + 2x_1 = 0$ in \mathbf{R}^2 $3x_1 = 0$ $1 + 3x_1 = 0$

(b)
$$5 + 4x_1 = 0$$
 in \mathbb{R}^2
 $(d) \quad 1 + 2x_1 = 0$ in \mathbb{R}^1
 $1 + 3x_1 = 0$
(f) $2 + 2x_1 = 0$ in \mathbb{R}^4
 $1 - x_2 = 0$
 $-2 + \pi x_3 = 0$

2. Warm up 2: Add a new equation to each of the systems above that satisfies the equations already in the system.

A linear system is made up of *non-degenerate* equations, that is, equations that have solutions by itself in the given vector space. For example, $x_1 - 2 - x_1 = 0$ is a degenrate equation, because it simplifies to 1 = 0. Usually we try to eliminate the *dependent* equations in a linear system, that is, those that are linear combinations of the other equations. Every *independent* equations reduces the solution space by 1 dimension.

To begin with, the vector space \mathbb{R}^n with an empty linear system has a dimension n solution space, as all variables x_i are *independent*, or *free*. Every independent equation in the system makes one of the independent variables *dependent*, though you have a choice as to which becomes dependent.

- 3. For each of the linear systems below, indicate
 - one solution (if any exist),
 - the independent variables,
 - an independent collection of equations, and
 - the dimension of the solution space.

(a)
$$5/2 - 3x_1 = 0$$
 in \mathbb{R}^1
(d) $-8x_2 = 0$ in \mathbb{R}^5
 $2 + x_1 + 9x_2 = 0$
 $x_2 - 2x_5 + 3x_1 + 2 = 0$

(b)
$$5/2 - 3x_1 = 0$$
 in \mathbb{R}^3
(e) $2 - 3x_1 + 5x_2 = 0$ in \mathbb{R}^2
 $1 + x_2 = 0$

(c)
$$6 + 2x_2 - x_1 = 0$$
 in \mathbb{R}^2
 $x_1/2 - x_2 = 3$
(f) $x_1 + 3x_2 - x_4 = 0$ in \mathbb{R}^4
 $x_3 - x_1/2 + 4 = x_3 - 7$
 $3x_2 + 22 = x_4$

- 4. For each of the linear systems above, find
 - all the solutions in the solution space,
 - the matrix that corresponds to the system, and
 - apply row operations to get an identity matrix in the top left corner.