
ESP Math 182

Worksheet 22

5 April 2018

1. Warm up: Consider a function f on an interval [a, b] divided up into 6 parts. Draw the shapes corresponding to the indicated integral approximation methods below.

Which method approximates the actual integral of f from a to b the best? The worst?

- 2. Using the trapezoid sum, calculate the area underneath the curve $y = x^2$ from 0 to 1, when it is split up into n intervals, then take the limit as $n \to \infty$.
- 3. (a) What power series represents the function $\frac{1}{1+x}$? What is the interval of convergence?
 - (b) What power series represents the function $\frac{1}{1+x^2}$? What is the interval of convergence?
 - (c) What power series represents the function $\arctan(x^2/2)$? What is the interval of convergence?

- 4. Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers, and let $L_n = \ln(1/a_n)/\ln(n)$ for n > 1. Assume that $\{L_n\}_{n=1}^{\infty}$ converges, with $\lim_{n\to\infty} L_n = L$.
 - (a) Suppose that L > 1. Show that the series $\sum_{n=1}^{\infty} a_n$ converges.

(b) Suppose that L < 1. Show that the series $\sum_{n=1}^{\infty} a_n$ diverges.

(c) Using part (a), show that the series
$$\sum_{n=1}^{\infty} x^{\ln(n)}$$
 converges if $0 < x < 1/e$.