Worksheet 14

1. Warm up: Give an example of each of the following sequences. Use a different one for each!

(a) non-increasing sequence
(b) increasing sequence
(c) non-decreasing sequence
(d) decreasing sequence
(e) constant sequence
(f) monotonic sequence
(g) sequence that is bounded below
(h) sequence that is bounded above
(i) bounded sequence
(j) convergent sequence

Bonus: What are the relations among the objects above? That is, which objects are specific cases of other objects? For example, "**if** constant, **then** bounded."

- 2. The limit of $\{a_n\}$ is L if for every $\epsilon > 0$ there exists N such that $|a_n L| < \epsilon$ for all n > N. Given convergent $\{a_n\}$ and ϵ in the examples below, find L and N.
 - (a) $a_n = 1/n, \ \epsilon = 1/2$
 - (b) $a_n = 3/n, \epsilon = 2/9$
 - (c) $a_n = 2^{-n} + 1, \ \epsilon = 1/1000$
 - (d) $a_n = 2\cos(n\pi)/n, \ \epsilon = 1/\pi$

- 3. Determine if the following statements are true or false. If true, provide some justification. If false, provide a counterexample.
 - (a) If $\lim_{n \to \infty} a_n = 0$ and $\lim_{n \to \infty} b_n = \infty$, then $\lim_{n \to \infty} a_n b_n = 0$.

(b) If the sequence a_n converges, then $(-1)^n a_n$ also converges.

4. What condition on x makes $\lim_{n \to \infty} x^n = 0$? Why?

- 5. Notice that $0.9 = \frac{9}{10}$, $0.99 = \frac{9}{10} + \frac{9}{100}$ and so on.
 - (a) Use this pattern to define a sequence $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n = 0.99999...$

(b) Use this pattern to define a sequence $\{a_n\}$ such that $\sum_{n=1}^{\infty} a_n = 0.1234123412...$