1. Warm up:

- (a) What is a sequence? Give an example of a sequence.
- (b) What is a series? Give an example of a series.
- 2. Find the first four terms in the following sequences, starting at n = 1.
 - (a) $x_n = 2n + 1$
 - (b) $a_n = (-2)^n$
 - (c) $b_n = 2 + (1 n)^n$
 - (d) $c_n = 2c_{n-1} + c_{n-1}^2$ where $c_1 = 2$
- 3. Reindex the formulas of the sequences above with m so that the term for n = 1 previously is now for m = 0.
- 4. Find a general formula for the *n*th term of the following sequences. The first term given in each sequence is for n = 1.
 - (a) $16, 25, 36, 49, \ldots$
 - (b) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots$
 - (c) $1, \frac{-1}{4}, \frac{1}{27}, \frac{-1}{256}, \dots$
 - (d) $-1, 1, -1, 1, -1, 1, \ldots$
 - (e) $0, 1, 0, 1, 0, \ldots$
 - (f) $1, 1, 2, 2, 3, 3, 4, \ldots$
 - (g) $e, \frac{e}{\pi}, \frac{e^2}{\pi}, \frac{e^2}{\pi^2}, \frac{e^3}{\pi^2}, \dots$
- 5. Using the periodicity of the cosine function, find formulas for the sequence in part (d) using:
 - (a) \cos (b) $|\cos|$