Worksheet 4

25 January 2018

1. Find what is wrong with this work. Can you complete it correctly?

$$\int \cos(x)\sin(x)\ dx$$

Let $u = \cos(x)$.

Then $du = -\sin(x)dx$.

So the integral is $-\int \cos(x) du$.

This simplifies to $-\sin(x) + C$.

2. Solve these problems by integration by substitution.

(a)
$$\int \frac{x}{\sqrt{x^2+9}} dx$$

(e)
$$\int \frac{2x-1}{x^2-x} \, dx$$

(b)
$$\int x^2 \sin(x^3) \ dx$$

(f)
$$\int \frac{x^2 e^{\sqrt{x^3-3}}}{\sqrt{x^3-3}} dx$$

(c)
$$\int \sin^5(x)\cos(x) \ dx$$

(g)
$$\int \frac{x}{1+x} \, dx$$

(d)
$$\int (x^7 + 2)(x^8 + 16x - 5)^4 dx$$

$$(h) \int \frac{x^8}{x^3 + 4} dx$$

3. (a) Use substitution to show that for f an even function,

$$\int_{-a}^{a} f(x) \ dx = 2 \int_{0}^{a} f(x) \ dx.$$

(b) Similarly, show that for g an odd function,

$$\int_{-a}^{a} g(x) \ dx = 0.$$

4. Suppose that f has an inverse function f^{-1} (so $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$ for all x, y). Show that

$$\int_{a}^{b} f(x) \ dx + \int_{f(a)}^{f(b)} f^{-1}(x) \ dx = bf(b) - af(a).$$

Hint: First show that $\int_{f(a)}^{f(b)} f^{-1}(x) dx = \int_a^b y f'(y) dy$.

5. Evaluate the following strange-looking integrals.

(a)
$$\sum_{k=1}^{20} \left(\int x^k - x^{k+1} \, dx \right)$$

(c)
$$\int_0^9 \sqrt{4 - \sqrt{4 - \sqrt{x}}} \, dx$$

(b)
$$\int_0^1 \left(\sum_{\ell=1}^{30} \log \left(x^{3\ell} \right) \right) dx$$

(d)
$$\int \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} dx$$

6. Find the area between the curves $y=x^2$, y=a|x|, and $y=a^2$, where a>0.