
Worksheet 28

 $20~{\rm April}~2017$

- 1. Warm up: Give the definition, in your own words, of the following terms.
 - (a) matrix
 - (b) eigenvector
 - (c) eigenvalue
- 2. Find the eigenvalues, eigenvectors, and determinants of the following linear maps.

(a)
$$\begin{bmatrix} 5 & 0 \\ -10 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 7/2 & 3 \\ -1 & 10 \end{bmatrix}$

- 3. For the maps above, draw where the vectors (0,0), (1,0), (0,1), (1,1) get taken to and color in the shape (called a *parallelogram*) they bound. For example:
 - $T = \begin{bmatrix} 2 & 0 \\ -1 & 2 \end{bmatrix} \qquad T(0,1) = (0,2) \quad T(1,1) = (2,1) \\ T(0,0) = (0,0) \quad T(1,0) = (2,-1)$

- 4. Find the areas of the parallelograms in the previous question. Compare them with the determinants of the corresponding linear maps.
- 5. Let $\vec{x} = \begin{bmatrix} 5\\1 \end{bmatrix}$ be a vector in \mathbf{R}^2 .
 - (a) Find a 2 × 2 matrix A such that $A\vec{x} = \begin{bmatrix} 1\\ 1/5 \end{bmatrix}$.
 - (b) Find a 2×2 matrix B that rotates \vec{x} by 120 degrees clockwise.
 - (c) Draw the vectors \vec{x} , $A\vec{x}$, and $BA\vec{x}$ on a grid. Describe, in words, what the matrix BA does to \vec{x} .