

Worksheet 22

30 March 2017

1. Warm up: Draw the regions described by the inequalities in polar coordinates below.

2. This question is about the folium of Descartes, the curve shown below. Its equation is $x^3 + y^3 = 3axy$, where $a \neq 0$ is a constant.

- (a) Show that for $t \neq -1, 0$, the line y = tx intersects the folium at the origin and at one other point P. Express the coordinates of P in terms of t. Use this to obtain a parametrization of the folium almost everywhere.
- (b) Describe for which values of t the parametrization you found above describes the curve in quadrants I, II, and IV. Note t = -1 is a point of discontinuity of the parametrization.
- (c) Calculate dy/dx as a function of t and find the points with horizontal or vertical tangent.
- (d) Find a polar equation $r = f(\theta)$ of the folium.

3. Find the intervals of convergence of the following series. Remeber to check endpoints.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n}$$

(b)
$$\sum_{n=0}^{\infty} n^n x^n$$

(c)
$$\sum_{n=1}^{\infty} n(x-3)^n$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n x^n}{n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{(-5)^n (x-3)^n}{n^2}$$

(f)
$$\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$$

(g)
$$\sum_{n=12}^{\infty} e^n (x-2)^n$$

(h)
$$\sum_{n=2}^{\infty} \frac{(x-2)^n}{(n\ln(n))^2}$$