Worksheet 17

1. Warm up: Are the following expressions power series? Why or why not?

- 2. Consider the function $f(x) = 4x^3 2x^2 + 3x 1$.
 - (a) Find the 2nd order Taylor polynomial for f at x = 0.

(b) Find the interval on which the Taylor approximation is no more than 0.5 away from the function.

- 3. Consider the series $\sum_{n=1}^{\infty} \frac{n^2}{6^n}$.
 - (a) Is this a geometric series? Why or why not?
 - (b) Find a geometric series that bounds this series above.
 - (c) Can you conclude that the original series converges?

4. The root test says that a series
$$\sum_{n=1}^{\infty} a_n$$
 converges if $\lim_{n \to \infty} \sqrt[n]{|a_n|} < 1$ and diverges if > 1.
(a) Use the root test to find the radius of convergence of $\sum_{n=1}^{\infty} \sin(1/n)x^n$.

- (b) Use the root test to find the radius of convergence of the geometric series $\sum_{n=0}^{\infty} ar^n$.
- 5. Find a power series with the following intervals of convergece:
 - (a) (1/2, 5/2)
 - (b) (a, b) for any pair of real numbers a < b