Worksheet 15

- 1. Warm up: Answer the following true / false questions.
 - (a) The sequence {a_n}[∞]_{n=1} for a_n = ¹/_n converges.
 (b) The series ∑[∞]_{n=1} ¹/_n converges.
 (c) If a series ∑[∞]_{n=0} a_n converges and a_n → c as n → ∞, then c = 0.
 (d) If a sequence {a_n}[∞]_{n=1} converges to 0, then ∑[∞]_{n=0} a_n converges.
- 2. Use geometric series to show that:
 - (a) $0.99999.\ldots = 1$
 - (b) 0.5555555.... = 5/9
 - (c) 1.36363636... = 15/11
- 3. Recall that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.
 - (a) Reindex this series so that the index starts at n = 0. That is, keep the series the same, but change the $\frac{1}{n}$ to something else.

(b) Use part (a) to show that
$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 diverges.

(c) Use these ideas to show that, for any positive integer k, the series $\sum_{n=1}^{\infty} \frac{1}{n+k}$ diverges.

4. Using the *p*-test, ratio test, (limit) comparison test, and alternating series test, determine if the following series converge or diverge. Say which convergence test(s) you are using.

(a)
$$\sum_{n=1}^{\infty} \frac{n+1}{n}$$
 (f) $\sum_{n=1}^{\infty} \frac{1}{2+3^n}$
(b) $\sum_{n=1}^{\infty} \frac{n^2}{n^3+4}$ (g) $\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{3^n}$
(c) $\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$ (h) $\sum_{n=1}^{\infty} (-1)^n (\pi/2 - \arctan(n))$
(d) $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2+1}}$ (i) $\sum_{n=1}^{\infty} \sin(1/n^2)$
(e) $\sum_{n=1}^{\infty} \frac{1}{2+\sqrt{3n}}$ (j) $\sum_{n=1}^{\infty} \frac{n!}{4^n n^3}$