ESP Math 182

Worksheet 4

19 January 2017

1. Find what is wrong with this work. Can you complete it correctly?

 $\int \cos(x) \sin(x) dx$ Let $u = \cos(x)$. Then $du = -\sin(x)dx$. So the integral is $-\int \cos(x) du$. This simplifies to $-\sin(x) + C$.

2. Solve these problems by integration by substitution.

(a)
$$\int \frac{x}{\sqrt{x^2 + 9}} dx$$

(b) $\int x^2 \sin(x^3) dx$
(c) $\int \sin^5(x) \cos(x) dx$
(d) $\int (x^7 + 2)(x^8 + 16x - 5)^4 dx$
(e) $\int \frac{2x - 1}{x^2 - x} dx$
(f) $\int \frac{x^2 e^{\sqrt{x^3 - 3}}}{\sqrt{x^3 - 3}} dx$

3. Let $n \ge 1$ be an integer.

- (a) Draw the graph of $y = x^n$ on $x \in [0, 1]$ for n = 1, 2, 3.
- (b) Find the integral of $y = x^n$ on $x \in [0, 1]$ for any $n \ge 1$.
- (c) What happens to your answer above when $n \to \infty$? Does this make sense?
- 4. Bonus: What is the area bounded between the curves $3 + \sin(x)$ and $3 \sin(x)$ from x = 0 to $x = k\pi$, for any integer k?